世界上有詭異的流傳病,跳舞病,坦噶尼克大笑病,這些是什麼樣子

時間 2021-06-19 19:18:23

1樓:匿名使用者

而得這兩種病的患者通常只做一件事情。跳舞病的話就只跳舞,患者幾乎一整天都在跳舞,也不會說了累。坦噶尼克大笑病的患者也是整體處於笑得乙個狀態,他們的相同點就是都相當於乙個沒有感情的機械人在重複做一件事情。

由於這類病症也找不到乙個**的源頭,所以會略顯恐怖。

2樓:ok好的

這些病一旦患了現今的醫學技術是無法**的,並且這些病害具有遺傳性,可能會遺傳給下一代。

3樓:匿名使用者

醫學上沒有辦法救治好任何病,這些詭異的病有可能是遺傳基因導致的,或者是因為當地的自然環境造成的。

4樓:鬼小

個人感覺這種比較奇怪的病,不僅有本地區特有的風俗的原因,同時也有一些其他的原因的。

5樓:匿名使用者

都是一些病種,可能是用發病時候的症狀來取的名字,或者是因為當地的水質等等問題導致的這種病。

6樓:阿旭鴨鴨

這可能是基因導致的疾病,也可能是當地的環境導致的疾病,所以還是要具體的看個人吧。

7樓:歡樂鳥

這些病看起來都是很奇怪,但是應該有一定的發病機制,只是目前還沒有研究出來。

8樓:地心小超人

這些病發生的原因有很多,可能是因為基因突變,不過這是少數情況。還有可能只是當地的一些習慣,但是讓人們不解,所以被稱為是病。

9樓:匿名使用者

世界上有很多大多數人沒見過的病,發病起來很恐怖怪異。讓人感到頭皮發麻。

不定積分的含義

10樓:匿名使用者

就是求導函式是f(x)的函式

11樓:qq1292335420我

性質1:設a與b均為常數,則f(a->b)[a*f(x)+b*g(x)]dx=a*f(a->b)f(x)dx+b*f(a->b)g(x)dx

性質2:設ab)f(x)dx=f(a->c)f(x)dx+f(c->b)f(x)dx

性質3:如果在區間【a,b】上f(x)恆等於1,那麼f(a->b)1dx=f(a->b)dx=b-a

性質4:如果在區間【a,b】上f(x)>=0,那麼f(a->b)f(x)dx>=0(ab)f(x)dx<=m(b-a) (ab)f(x)dx=f(c)(b-a) (a<=c<=b)成立。

12樓:你的眼神唯美

不定積分結果不唯一求導驗證應該能夠提高湊微分的計算能力。

那就用數字帝國,唉

不定積分的導數怎麼求

13樓:宮主與木蘭

如果對不定積分式子∫f(x)dx進行求導,那麼得到的當然還是f(x)而如果是∫f(x-t)dx這樣的式子,就還要先轉換積分變數,再進行求導。

求導是微積分的基礎,同時也是微積分計算的乙個重要的支柱。物理學、幾何學、經濟學等學科中的一些重要概念都可以用導數來表示。如導數可以表示運動物體的瞬時速度和加速度、可以表示曲線在一點的斜率、還可以表示經濟學中的邊際和彈性。

拓展資料:導數公式:

1.c'=0(c為常數);

2.(xn)'=nx(n-1) (n∈r);

3.(sinx)'=cosx;

4.(cosx)'=-sinx;

5.(ax)'=axina (ln為自然對數);

6.(logax)'=(1/x)logae=1/(xlna) (a>0,且a≠1);

7.(tanx)'=1/(cosx)2=(secx)28.(cotx)'=-1/(sinx)2=-(cscx)29.(secx)'=tanx secx;

10.(cscx)'=-cotx cscx;

14樓:蘇規放

1、樓主的求導問題,並沒有什麼特別的公式可以套用;

2、只要根據不定積分跟求導的意義計算即可;

3、本題的計算中用到了積的求導法則跟鏈式求導法則;

4、具體解答如下,若有疑問,歡迎追問,有問必答。

15樓:不老巖

變限積分求導有專門的求導公式,把上限的被求導的自變數直接帶入函式中即可:

16樓:等待晴天

f (x)=x平方 的導數是 f '(x)=2x, 那麼相應的就是2x反過來是x的平方.

在微積分中,乙個函式f 的不定積分,或原函式,或反導數,是乙個導數等於f 的函式 f ,即f ′ = f。不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。

這樣,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。

tanx的不定積分

17樓:那個閃電

∫tanxdx

=∫sinx/cosx dx

=∫1/cosx d(-cosx)

因為∫sinxdx=-cosx(sinx的不定積分)所以sinxdx=d(-cosx)

=-∫1/cosx d(cosx)(換元積分法)令u=cosx,du=d(cosx)

=-∫1/u du=-ln|u|+c

=-ln|cosx|+c

18樓:你的眼神唯美

不定積分結果不唯一求導驗證應該能夠提高湊微分的計算能力。原式等於∫sinx/cosxdx=-∫(1/cosx)dcosx=-ln(abs(cosx))+c。其中abs表示絕對值。

19樓:類美錯飛荷

∫tanxdx=∫sinx/cosxdx=-∫1/cosxdcosx=-ln|cosx|+c

常用不定積分公式?

20樓:文子

在微積分中,乙個函式f 的不定積分,或原函式,或反導數,是乙個導數等於f 的函式 f ,即f ′ = f。不定積分和定積分間的關係由微積分基本定理確定,其中f是f的不定積分。

根據牛頓-萊布尼茨公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。這裡要注意不定積分與定積分之間的關係:定積分是乙個數,而不定積分是乙個表示式,它們僅僅是數學上有乙個計拿搏算關係。

乙個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分。

21樓:鞠翠花潮戌

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2)

dx=arcsinx+c

11)∫1/(1+x^2)dx=arctanx+c

12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c

擴充套件資料:

積分的乙個嚴格的數學定義由波恩哈德·黎曼給出(參見條目「黎曼積分」)。黎曼的定義運用了極限的概念,把曲邊梯形設想為一系列矩形組合的極限。從十九世紀起,更高階的積分定義逐漸出現,有了對各種積分域上的各種型別的函式的積分。

比如說,路徑積分是多元函式的積念慧分,積分的區間不再是一條線段(區間[a,b]),而是一條平面上或空間中的曲線段;在面積積分中,曲線被三維空間中的乙個敬枝曲面代替。對微分形式的積分是微分幾何中的基本概念。

求不定積分的方法:

第一類換元其實就是一種拼湊,利用f'(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為乙個整體,求出最終的結果。亮高敏(用換元法說,就是把f(x)換為t,再換回來)

分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數函式、對數函式乘上乙個x這類的,記憶方法是把其中一部分利用上面提到的f『(x)dx=df(x)變形,再用∫xdf(x)=f(x)x-∫f(x)dx這樣的公式,當然x可以換成其他g(x)

22樓:鄒桂枝殳巳

∫secx=ln|secx+tanx|+c推導:左邊=∫dx/正大cosx=∫cosxdx/(cosx)^2=∫d(sinx)/[1-(sinx)^2]令t=sinx,

=∫dt/(1-t^2)

=(1/2)∫dt/(1+t)+(1/2)∫dt/(1-t)=(1/2)∫d(1+t)/(1+t)-(1/2)∫d(1-t)/(1-t)

=(1/2)ln|1+t|-(1/2)ln|1-t|+c=(1/2)ln|(1+t)/(1-t)|+c=(1/2)ln|(1+sinx)/(1-sinx)|+c//在對數中分子分母同乘1+sinx,

=(1/2)ln|(1+sinx)^2/(cosx)^2|+c=ln|(1+sinx)/cosx|+c

=ln|1/cosx+sinx/cosx|+c=ln(secx+tanx|+c=右邊,

∴等式山清飢成立。

提供一些給你!∫a

dx=ax+

c,a和c都逗返是常數

∫x^adx=

[x^(a

+1)]/(a+1)

+c,其中a為常數且a≠

-1∫1/xdx

=ln|x|+c

∫a^xdx=

(a^x)/lna

+c,其中a

>0且a≠1∫

e^xdx

=e^x+c

∫cosxdx=

sinx+c

∫sinxdx=

-cosx+c

∫cotxdx=

ln|sinx|+c

∫tanxdx=

-ln|cosx|+c

=ln|secx|+c

∫secxdx=

(1/2)ln|(1

+sinx)/(1

-sinx)|+c

=ln|secx

+tanx|+c

∫cscxdx=

ln|tan(x/2)|+c

=(1/2)ln|(1

-cosx)/(1

+cosx)|+c

=-ln|cscx

+cotx|+c

=ln|cscx

-cotx|+c

∫sec^2(x)dx=

tanx+c

∫csc^2(x)dx=

-cotx+c

∫secxtanxdx=

secx+c

∫cscxcotxdx=

-cscx+c

∫dx/(a^2

+x^2)

=(1/a)arctan(x/a)+c

∫dx/√(a^2

-x^2)

=arcsin(x/a)+c

∫dx/√(x^2

+a^2)

=ln|x

+√(x^2

+a^2)|+c

∫dx/√(x^2

-a^2)

=ln|x

+√(x^2

-a^2)|+c

∫√(x^2

-a^2)dx=x/2√(x^2

-a^2)-a^2/2ln[x+√(x^2-a^2)]+c

∫√(x^2

+a^2)dx=x/2√(x^2

+a^2)+a^2/2ln[x+√(x^2+a^2)]+c

∫√(a^2

-x^2)dx=x/2√(a^2

-x^2)+a^2/2arcsin(x/a)+c學習進步!望採納,o(∩_∩)o~

23樓:海海

^1)∫0dx=c 不定積分的定義

2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)兆搜∫襲茄cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c11)∫1/(1+x^2)dx=arctanx+c12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c

13)∫secxdx=ln|secx+tanx|+c 基本積分公式14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c

15)∫1/√(a^2-x^2) dx=(1/a)*arcsin(x/a)+c

16) ∫sec^2 x dx=tanx+c;

17) ∫shx dx=chx+c;

18) ∫族禪歷chx dx=shx+c;

19) ∫thx dx=ln(chx)+c;

目前為止,世界上有狂犬病發作治癒的案例嗎

有,國外有幾例 的,中國最近研究似乎也有進展。未來估計發病了也能治了,從機理上講,比 癌症什麼的容易得多。世界上僅有一例治好的,一旦發病,死亡率100 比癌症還難 沒有,狂犬病是由狂犬病病毒感染引起的一種動物源性傳染病,目前沒有有效的 方案,病死率幾乎100 大多數病例是由於被患有狂犬病的動物咬傷所...

世界上最危險的病是什麼,世界上10大最危險的病是什麼

後會無期 世界最致命的十大疾病 目前,在世界範圍內仍有許多疾病在威脅著人類的生命,其中最為嚴重的有以下10種 一 心臟病 是北美 歐洲 大洋洲主要的疾病,特別是老年人所受的此病威脅最大,僅美國每年就有75萬人死於此病。二 惡性腫瘤 癌 在百餘種不同病變的痛症中,至今尚未發現有特效的 方法。三 腦血管...

世界上有多少人得頸椎病,年輕人會不會得頸椎病,比如20 30歲左右的?

患有頸椎病的人有很多的,一般來說對患處針灸理療的辦法,可以得到良好的療效。同時可用一些對頸椎病的 用一些消炎止痛藥物。建議你有空可以去做 推拿,可每天堅持一定時間的戶外運動,比如放風箏,散步,慢跑。 頸椎病的中醫方法 1 圍領 頸椎病 即頸託或叫頸圍,一般外出或工作時用。其作用不是固定頸部,而是限制...