1加1為什麼等於,1加1為什麼等於

時間 2022-09-02 00:25:12

1樓:匿名使用者

皮亞諾公理

皮亞諾公理,也稱皮亞諾公設,是數學家皮亞諾(皮阿羅)提出的關於自然數的五條公理系統。根據這五條公理可以建立起一階算術系統,也稱皮亞諾算術系統。   皮亞諾的這五條公理用非形式化的方法敘述如下:

①1是自然數;   ②每乙個確定的自然數a,都有乙個確定的後繼數a' ,a' 也是自然數(乙個數的後繼數就是緊接在這個數後面的數,例如,1的後繼數是2,2的後繼數是3等等);   ③如果b、c都是自然數a的後繼數,那麼b=c;   ④1不是任何自然數的後繼數;   ⑤任意關於自然數的命題,如果證明了它對自然數1是對的,又假定它對自然數n為真時,可以證明它對n' 也真,那麼,命題對所有自然數都真。(這條公理也叫歸納公設,保證了數學歸納法的正確性)   注:歸納公設可以用來證明1是唯一不是後繼數的自然數,因為令命題為「n=1或n為其它數的後繼數」,那麼滿足歸納公設的條件。

若將0也視作自然數,則公理中的1要換成0。

編輯本段更正式的定義

乙個戴德金-皮亞諾結構為一滿足下列條件的三元組(x, x, f):   1、x是一集合,x為x中一元素,f是x到自身的對映;   2、x不在f的值域內;   3、f為一單射。   4、若a為x的子集並滿足x屬於a,且若a屬於a, 則f(a)亦屬於a則a=x。

該結構與由皮阿羅公理引出的關於自然數集合的基本假設是一致的:   1、p(自然數集)不是空集;   2、p到p內存在a->a直接後繼元素的一一對映;   3、後繼元素對映像的集合是p的真子集;   4、若p任意子集既含有非後繼元素的元素,又有含有子集中每個元素的後繼元素,則此子集與p重合。   能用來論證許多平時常見又不知其**的定理!

例如:其中第四個假設即為應用極其廣泛的歸納法第一原理(數學歸納法)的理論依據。

這就是數字相加的理論基礎:當然這是在人們根據經驗1+1=2 1+2=3.......後為了加強理論基礎而設立的乙個理論,這就成了自然數相加的理論基礎

2樓:匿名使用者

理論上是1+1=2,但是在多處情況下,1+1就不等於2了,如1+1=11等。

1加1為什麼等於2 20

3樓:

關於1加1為什麼等於2,

因為2被定義為1+1,

即2=1+1,

根據等式互換原則,

左右互換,等式仍然成立,

所以可以得出,

1+1=2。

4樓:youth小傑

在回答來1+1為什麼等於2之前,先自

來定義什麼是「1」,bai什麼是「du2」:在二進位制以上的進製中,我zhi

們把「0」的

dao後繼數用「1」表示,讀音與「一」相同。「1」的後繼數用「2」表示,並且讀音與「二」相同。如果用其他符號表示也未嘗不可,不過這個其他符號可能就讀作「èr」了。

下面定義什麼是加法:

自然數的加法,用符號「+」表示,指具有下面性質(*)的運算:

其中,第二個式子要求對任意自然數x和y都成立。另外,加法定義的合理性尚未證明,即尚需證明上述定義中加法這個二元運算是可以實現的,這裡略去。

現在1+1為什麼等於2就很容易理解了:

不過嚴格證明比這個複雜很多,據說羅素和懷特海的《數學原理》曾用三十頁的篇幅證明「1+1=2」。

5樓:匿名使用者

這個問題

需要用加法的

定義來解釋

1加1為什麼等於2了?

6樓:吹太大泡泡

學問深了 1+1就不只會等於2 了,有可能無窮大,也有可能無窮小

7樓:匿名使用者

1加1在十進位、八進位、十六進製時等於2

在2進製時1+1等於10了,哈哈

在實踐中還有不等於2的地方多了去了,

如報成績時1加1等於十了或更多,

報問題時1加1又可能是0了呢

總之你要是老闆,你讓1加1等於幾,它就等於幾。

8樓:蒼松翠柏青梅

因為(此處略去n字),所以1加1等於2。

9樓:匿名使用者

1加1算正確的時候等於2

1加1為什麼等於2?

10樓:鎮深

1+1=2 是初等數學範圍內的數值計算等式。

當某個原始人第乙個意識到1+1=2,進而認識到兩個數相加得到另乙個確定的數時,這一刻是人類文明的偉大時刻,因為他發現了乙個非常重要的性質——可加性。這個性質及其推廣正是數學的全部根基,它甚至說出數學為什麼用途廣泛的同時,告訴我們數學的侷限性。

人們知道,世界上存在三類不同的事物。一類是完全滿足可加性的量。比如質量,容器裡的氣體總質量總是等於每個氣體分子質量之和。對於這些量,1+1=2是完全成立的。

擴充套件資料:

皮亞諾公理,也稱皮亞諾公設,是數學家皮亞諾(皮阿羅)提出的關於自然數的五條公理系統。根據這五條公理可以建立起一階算術系統,也稱皮亞諾算術系統。

皮亞諾的這五條公理用非形式化的方法敘述如下:

①0是自然數;

②每乙個確定的自然數 a,都有乙個確定的後繼數x' ,x' 也是自然數(乙個數的後繼數就是緊接在這個數後面的數,例如,1的後繼數是2,2的後繼數是3等等);

③如果b、c都是自然數a的後繼數,那麼b = c;

④0不是任何自然數的後繼數;

⑤設s是自然數集的乙個子集,且(1)0屬於s;(2)如果n屬於s,那麼n'也屬於s。

(這條公理也叫歸納公理,保證了數學歸納法的正確性)

更正式的定義如下:  乙個戴德金-皮亞諾結構是這樣的乙個三元組(x, x, f),其中x是乙個集合,x為x中乙個元素,f是x到自身的對映,且符合以下條件:

x不在f的值域內;

f為乙個單射;

若x∈a 且 " a∈a 蘊涵 f(a)∈a",則a=x。

11樓:化身孤島的鯨

從數學角度來看,一加一等於二是乙個基礎,假設這是數學的基礎,沒有他所有的店裡都無法站穩腳。

12樓:匿名使用者

數學的意義上,1+1=2是正確的,但在科學的角度上,1+1=2也可能是不正確的

13樓:來自大溶洞有志氣的墨蘭

先弄出乙個手指頭,再弄出乙個手指頭數數幾個就是了

14樓:牧清韓餘

那1加1不是3的話,媽媽加爸爸等三人,因為會生找呀!

15樓:東問煒

兩個大寫的1加起來不是二嗎

證明為什麼1加1等於2?

16樓:love賜華為晨

根據皮亞諾自然數公理:

1.0屬於n.

2.若x屬於n,則x有且只有乙個後繼x'.

3.對任乙個x屬於n,皆有x'不等於0.

4.對任意x,y屬於n,若x不等於y,則x'不等於y'.

17樓:匿名使用者

1+1這道題有很多人知道等於2,【1+1=2】,一根小棒加一根小棒等於兩根小棒,不會1+1這道題可以用計算器算一算。

18樓:農家書院小生活

乙隻筷子加乙隻筷子就等於兩隻筷子,所以一加一等於二

19樓:匿名使用者

有時候特定情況下,1加1不一定等於2。

20樓:淡定

因為2-1等於1,為何2-1等於1?因為1+1等於2。

21樓:匿名使用者

用反證法證明:假定1+1≠2根據自然數大小規定,後乙個數是前面乙個數+1,即2=1+1兩者矛盾,所以1+1=2陳景潤證明的叫歌德巴-赫猜想。並不是證明所謂的1+1為什麼等於2。

當年歌德巴-赫在給大數學家尤拉的一封信中說,他認為任何乙個大於6的偶數都可以寫成兩個質數的和,但他既無法否定這個命題,也無法證明它是正確的。尤拉也無法證明。這「兩個質數的和」簡寫起來就是「1+1」。

幾百年過去了,一直沒有人能夠證明歌德巴-赫猜想,包括陳景潤,他只是把證明向前推進了一大步,但還是沒有完全證明

22樓:匿名使用者

這個可以問華羅庚,人家算了幾麻袋的草稿紙

23樓:逸品王

華羅庚證明到一半 屎了 你在將來見到他的時候幫我問問他

一加一等於二是為什麼?

24樓:白水和襪子

從數學角度來看,1+1=2是乙個基礎假設,這是數學的基礎,沒有它,所有定理都無法站住腳

有很多答案,可以理解為:

⒈一杯水加一杯水還是一杯水。

⒉這就是相對的,1+1中的一,是相對原本的「單位」或稱「量」,「=2」中的「2」也是。而你們所說的等於「1」,這個「1」就不是與原本的單位來定義的,是新的「單位」

⒊1+1>2,比如說,一件事情你和別人團結合作,就可能大於2,是你乙個自己花倆倍的時間所完成不了的。也可能小與2,你可以花小與倆倍的時間就能完成

⒋並不是所有的努力都能換來回報

⒌乙個白天加乙個黑夜 等於一整天 不等於兩天

⒍即使人們希望一加一等於二,但未必能將事情做得完美,誤差是絕對的,計畫趕不上變化

⒎沒有任何事都是絕對的存在,有些東西表面上十分相似,如果不按特定的實際情況去隨意組合,有時候會因為很不合適而導致弄巧成拙,收不到想當然的結果

25樓:黃先生生活達人

因為1+1就是等於2,這屬於數學邏輯。

一、課內重視聽講,課後及時複習

接受一種新的知識,主要實在課堂上進行的,所以要重視課堂上的學習效率,找到適合自己的學習方法,上課時要跟住老師的思路,積極思考。下課之後要及時複習,遇到不懂的地方要及時去問,在做作業的時候,先把老師課堂上講解的內容回想一遍,還要牢牢的掌握公式及推理過程,盡量不要去翻書。盡量自己思考,不要急於翻看答案。

還要經常性的總結和複習,把知識點結合起來,變成自己的知識體系。

二、多做題,養成良好的解題習慣

要想學好數學,大量做題是必可避免的,熟練地掌握各種題型,這樣才能有效的提高數學成績。剛開始做題的時候先以書上習題為主,答好基礎,然後逐漸增加難度,開拓思路,練習各種型別的解題思路,對於容易出現錯誤的題型,應該記錄下來,反覆加以聯絡。在做題的時候應該養成良好的解題習慣,集中注意力,這樣才能進入最佳的狀態,形成習慣,這樣在考試的時候才能運用自如。

三、調整心態,正確對待考試

考試的時候,大部分的題都是基礎題,只有少數幾道題時比較難的題,所以我們要調整好心態,鼓勵自己,在做題的時候認真思考,不要浮躁,在考試之前做好準備,做一做常規的題型,不要為了趕時間而增加做題速度,要有條不紊的進行。

26樓:y狄

有獎勵寫回答共17個回答

白水和襪子

ta獲得超過2658個讚

聊聊關注成為第46位粉絲

從數學角度來看,1+1=2是乙個基礎假設,這是數學的基礎,沒有它,所有定理都無法站住腳

有很多答案,可以理解為:

⒈一杯水加一杯水還是一杯水。

⒉這就是相對的,1+1中的一,是相對原本的「單位」或稱「量」,「=2」中的「2」也是。而你們所說的等於「1」,這個「1」就不是與原本的單位來定義的,是新的「單位」

⒊1+1>2,比如說,一件事情你和別人團結合作,就可能大於2,是你乙個自己花倆倍的時間所完成不了的。也可能小與2,你可以花小與倆倍的時間就能完成

⒋並不是所有的努力都能換來回報

⒌乙個白天加乙個黑夜 等於一整天 不等於兩天

⒍即使人們希望一加一等於二,但未必能將事情做得完美,誤差是絕對的,計畫趕不上變化

⒎沒有任何事都是絕對的存在,有些東西表面上十分相似,如果不按特定的實際情況去隨意組合,有時候會因為很不合適而導致弄巧成拙,收不到想當然的結果a獲得超過2658個讚

聊聊關注成為第46位粉

從數學角度來看,1+1=2是乙個基礎假設,這是數學的基礎,沒有它,所有定理都無法站住腳

有很多答案,可以理解為:

⒈一杯水加一杯水還是一杯水。

⒉這就是相對的,1+1中的一,是相對原本的「單位」或稱「量」,「=2」中的「2」也是。而你們所說的等於「1」,這個「1」就不是與原本的單位來定義的,是新的「單位」

⒊1+1>2,比如說,一件事情你和別人團結合作,就可能大於2,是你乙個自己花倆倍的時間所完成不了的。也可能小與2,你可以花小與倆倍的時間就能完成

⒋並不是所有的努力都能換來回報

⒌乙個白天加乙個黑夜 等於一整天 不等於兩天

⒍即使人們希望一加一等於二,但未必能將事情做得完美,誤差是絕對的,計畫趕不上變化

⒎沒有任何事都是絕對的存在,有些東西表面上十分相似,如果不按特定的實際情況去隨意組合,有時候會因為很不合適而導致弄巧成拙,收不到想當然的結果獎勵寫回答共1個回答

白水和襪子

ta獲得超過2658個讚

聊聊關注成為第46位粉絲

從數學角度來看,1+1=2是乙個基礎假設,這是數學的基礎,沒有它,所有定理都無法站住腳

有很多答案,可以理解為:

⒈一杯水加一杯水還是一杯水。

⒉這就是相對的,1+1中的一,是相對原本的「單位」或稱「量」,「=2」中的「2」也是。而你們所說的等於「1」,這個「1」就不是與原本的單位來定義的,是新的「單位」

⒊1+1>2,比如說,一件事情你和別人團結合作,就可能大於2,是你乙個自己花倆倍的時間所完成不了的。也可能小與2,你可以花小與倆倍的時間就能完成

⒋並不是所有的努力都能換來回報

⒌乙個白天加乙個黑夜 等於一整天 不等於兩天

⒍即使人們希望一加一等於二,但未必能將事情做得完美,誤差是絕對的,計畫趕不上變化

⒎沒有任何事都是絕對的存在,有些東西表面上十分相似,如果不按特定的實際情況去隨意組合,有時候會因為很不合適而

1加1為什麼等於,1加1為什麼等於2

1十1 2是數學基本概念。在某些方面1 1就不是簡單的等於二!一滴水在容器中加入另一滴水在同一溶器中還是一滴水,體積增大一倍僅此。 貝貝小腳腳 1 1也不一定等於二啊,在不同的地方相同的表現形式會產生不同的結果,同樣對應於不同的參照物,相同的表現形式疊加也會有不同的結果。所以這個問題要看是在幾維度的...

證明為什麼1加1等於,證明為什麼1加1等於2?

love賜華為晨 根據皮亞諾自然數公理 1.0屬於n.2.若x屬於n,則x有且只有一個後繼x 3.對任一個x屬於n,皆有x 不等於0.4.對任意x,y屬於n,若x不等於y,則x 不等於y 一生唱吟 當年歌德 寫信給尤拉,提出這麼兩條猜想 1 任何大於2的偶數都能分成兩個素數之和 2 任何大於5的奇數...

1加1為什麼等於

蘋果那個不太對,交換不等於加啊。比如 我有乙隻手。然後又長了乙隻手。所以現在我有兩隻手。1 1也有可能等於三啊。很多人都不知道的,這是需要乙個很漫長的推理過程的!在此省略推理過程 結論 1 1 2 因為這是一種規則,發明數字的人規定好了給人們計算數量的單位。所以1 1 2 如果沒有前人定下的規則,在...