1樓:海邊的風
以八進位制數217.36為例,進行數制轉換的說明,具體如下:
八進位制轉換為十進位制
以小數點為分界,小數點前的每一位八進位制數乘以8的n次冪,小數點後的每一位八進位制數乘以8的-n次冪,最後求和即可。
八進位制轉換為二進位制
按照順序,將每一位八進位制數改寫成等值的三位二進位制數,次序不變,小數點位置不變,合併在一起,並將首位0及末位0捨去。
2樓:匿名使用者
二進位制與十六進製制的關係
2進製 0000 0001 0010 0011 0100 0101 0110 0111
16進製制 0 1 2 3 4 5 6 7
2進製 1000 1001 1010 1011 1100 1101 1110 1111
16進製制 8 9 a(10) b(11) c(12) d(13) e(14) f(15)
可以用四位數的二進位制數來代表乙個16進製制,如3a16 轉為二進位制為:
3為0011,a 為1010,合併起來為00111010。可以將最左邊的0去掉得1110102
右要將二進位制轉為16進製制,只需將二進位制的位數由右向左每四位乙個單位分隔,將各單位對照出16進製制的值即可。
二進位制與八進位制間的關係
二進位制 000 001 010 011 100 101 110 111
八進位制 0 1 2 3 4 5 6 7
二進位制與八進位制的關係類似於二進位制與十六進製制的關係,以八進位制的各數為0到7,以三位二進位制數來表示。如要將51028 轉為二進位制,5為101,1為001,0為000,2為010,將這些數的二進位制合併後為1010010000102,即是二進位制的值。
若要將二進位制轉為八進位制,將二進位制的位數由右向左每三位乙個單位分隔,將事單位對照出八進位制的值即可。
轉換成十進位制也簡單
有乙個公式:二進位制數、八進位制數、十六進製制數的各位數字分別乖以各自的基數的(n-1)次方,其和相加之和便是相應的十進位制數。
如:八進位制;1101q=1*8^0+0*8^1+1*8^2+1*8^3=577
3樓:匿名使用者
用windows自帶的計算機換算就好了。。
用科學型計算機,然後就有10進,2進,8進,16進
慢慢轉吧
二進位制如何轉換成八進位制?
4樓:匿名使用者
先了解二進位制
數與八進位制數之間的對應關係。有個方法,把二進位制的數從右往左,三位一組,不夠補0
列:111=4+2+1=7
11001拆分為 001和011,001=1,011=2+1=3;
那麼11001轉換為八進位制就是31.
擴充套件資料二進位制轉換為十六進製制
參照二進位制轉八進位制,但是它是從右往左,四位一組,不夠補0列子:1101101拆分為1101、0110分別計算兩個二進位制的值,1101=8+4+0+1=13,十六進製制中13為d
0110=4+2=6,那麼二進位制1101101轉換為十六進製制就是6d。
八進位制轉換為二進位制
從後往前,每一位按十進位制轉化為三位二進位制,缺位補0列子:77,拆分開7=4+2+1=111
所以八進位制的77轉換位二進位制得111111.
5樓:打娘胎裡喜歡你
二進位制轉換為八進位制方法:
1、取三合一法,即從二進位制的小數點為分界點,向左(向右)每三位取成一位,接著將這三位二進位制按權相加,得到的數就是一位八位二進位制數,然後,按順序進行排列,小數點的位置不變,得到的數字就是我們所求的八進位制數。
如果向左(向右)取三位後,取到最高(最低)位時候,如果無法湊足三位,可以在小數點最左邊(最右邊),即整數的最高位(最低位)添0,湊足三位。例:
①將二進位制數101110.101轉換為八進位制
得到結果:將101110.101轉換為八進位制為56.5
② 將二進位制數1101.1轉換為八進位制
得到結果:將1101.1轉換為八進位制為15.4
2、取一分三法,即將一位八進位制數分解成三位二進位制數,用三位二進位制按權相加去湊這位八進位制數,小數點位置照舊。例:
① 將八進位制數67.54轉換為二進位制
因此,將八進位制數67.54轉換為二進位制數為110111.101100,即110111.1011
6樓:匿名使用者
從低位到高位,把每3位二進位制
數轉換成一位八進位制數即可。
由於2的3次方等於8,八進位制和二進位制之間的轉化是三次方的關係,可以把二進位制數分段轉化,也就是從後向前開始,三位三位的轉化。
例如:110100=(110)(100)=6 4
7樓:匿名使用者
二進位制 八進位制
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7
在把二進位制數轉換為八進位制表示形式時,對每三位二進位制位進行分組,應該從小數點所在位置分別向左向右劃分,若整數部分倍數不是3的倍數,可以在最高位前面補若干個0;對小數部分,當其位數不是的倍數時,在最低位後補若干個0.然後從左到右把每組的八進位製碼依次寫出,即得轉換結果.
你算一下就知道了啊
比如110=2^2+2+0=6
8樓:樹上的蝸牛
二進位制數轉換成八進位制數:對於整數,從低位到高位將二進位制數的每三位分為一組,若不夠三位時,在高位左面添0,補足三位,然後將每三位二進位制數用一位八進位制數替換,小數部分從小數點開始,自左向右每三位一組進行轉換即可完成。例如:
將二進位制數1101001轉換成八進位制數,則(001 101 001)2
| | |
( 1 5 1)8
( 1101001)2=(151)8
八進位制如何轉換成十進位制
9樓:清溪看世界
把八進位制數按權、相加即可得十進位制數,也就是讓八進位制各位上的係數乘以對應的權,然後求其和,如下:
156.48 = 1×8^2 + 5×8^1 + 6×8^0 + 4×8^-1 = 110.5
整數:156 = 1×8^2 + 5×8^1 + 6×8^0小數:0.4 = 4×8^-1
10樓:匿名使用者
教你乙個很簡單的方法 從八進位制的個位開始 分別乘於8的0次方(就是1),8的1次方,8的2次方。。。再相加就是十進位制的值了 比如八進位制11 轉成十進位制就是8+1=9 或者你就直接用計算器
簡述二進位制、八進位制、十進位制數以及十六進製制數之間相互轉換的方法。
11樓:草原上之狼
二進位制與十進位制之間的轉換
1十進位制轉二進位制
方法為:十進位制數除2取餘法,即十進位制數除2,餘數為權位上的數,得到的商值繼續除2,依此步驟繼續向下運算直到商為0為止。
(具體用法如下圖)
2二進位制轉十進位制
方法為:把二進位制數按權、相加即得十進位制數。
(具體用法如下圖)
end二進位制與八進位制之間的轉換
1二進位制轉八進位制
方法為:3位二進位制數按權相加得到1位八進位制數。(注意事項,3位二進位制轉成八進位制是從右到左開始轉換,不足時補0)。
(具體用法如下圖)
2八進位制轉成二進位制
方法為:八進位制數通過除2取餘法,得到二進位制數,對每個八進位制為3個二進位制,不足時在最左邊補零。
(具體用法如下圖)
end二進位制與十六進製制之間的轉換
1二進位制轉十六進製制
方法為:與二進位制轉八進位制方法近似,八進位制是取三合一,十六進製制是取四合一。(注意事項,4位二進位制轉成十六進製制是從右到左開始轉換,不足時補0)。
(具體用法如下圖)
2十六進製制轉二進位制
方法為:十六進製制數通過除2取餘法,得到二進位制數,對每個十六進製制為4個二進位制,不足時在最左邊補零。
(具體用法如下圖)
end十進位制與八進位制與十六進製制之間的轉換
十進位制轉八進位制或者十六進製制有兩種方法
第一:間接法—把十進位制轉成二進位制,然後再由二進位制轉成八進位制或者十六進製制。這裡不再做**用法解釋。
第二:直接法—把十進位制轉八進位制或者十六進製制按照除8或者16取餘,直到商為0為止。
(具體用法如下圖)
八進位制或者十六進製制轉成十進位制
方法為:把八進位制、十六進製制數按權、相加即得十進位制數。
(具體用法如下圖)
end十六進製制與八進位制之間的轉換
1八進位制與十六進製制之間的轉換有兩種方法
第一種:他們之間的轉換可以先轉成二進位制然後再相互轉換。
第二種:他們之間的轉換可以先轉成十進位制然後再相互轉換。
這裡就不再進行**用法解釋。
八進位制十進位制怎麼轉換?
12樓:手機使用者
給你個演算法:
十進位制轉二進位制(整數及小數部分):
1、把該十進位制數,用二因式分解,取餘。
以235為例,轉為二進位制
235除以2得117,餘1
117除以2得58,餘1
58除以2得29,餘0
29除以2得14,餘1
14除以2得7,餘0
7除以2得3,餘1
3除以2得1,餘1
從得到的1開始寫起,餘數倒排,加在它後面,就可得11101011。
2、把十進位制中的小數部份,轉為二進位制。
把該小數不斷乘2,取整,直至沒有小數為止,注意不是所有小數都能轉為二進位制!
以0.75為例,
0.75剩以2得1.50,取整數1
0.50剩以2得1,取整數1,順序取數就可得0.11。
1、二進位制數、八進位制數、十六進製制數轉十進位制數
有乙個公式:二進位制數、八進位制數、十六進製制數的各位數字分別乖以各自的基數的(n-1)次方,其和相加之和便是相應的十進位制數。個位,n=1;十位,n=2...舉例:
110b=1*2的2次方+1*2的1次方+0*2的0次方=0+4+2+0=6d
110q=1*8的2次方+1*8的1次方+0*8的0次方=64+8+0=72d
110h=1*16的2次方+1*16的1次方+0*16的0次方=256+16+0=272d
2、十進位制數轉二進位制數、八進位制數、十六進製制數
方法是相同的,即整數部分用除基取餘的演算法,小數部分用乘基取整的方法,然後將整數與小數部分拼接成乙個數作為轉換的最後結果。
例:見四級指導16頁。
3、二進位制數轉換成其它資料型別
3-1二進位制轉八進位制:
從小數點位置開始,整數部分向左,小數部分向右,每三位二進位制為一組用一位八進位制的數字來表示,不足三位的用0補足,
就是乙個相應八進位制數的表示。
010110.001100b=26.14q
八進位制轉二進位制反之則可。
3-2二進位制轉十進位制:
見1 3-3二進位制轉十六進製制:
從小數點位置開始,整數部分向左,小數部分向右,每四位二進位制為一組用一位十六進製制的數字來表示,
不足四位的用0補足,就是乙個相應十六進製制數的表示。
00100110.00010100b=26.14h
十進位制轉各進製
要將十進位制轉為各進製的方式,只需除以各進製的權值,取得其餘數,第一次的餘數當個位數,第二次餘數當十位數,其餘依此類推,直到被除數小於權值,最後的被除數當最高位數。
一、十進位制轉二進位制
如:55轉為二進位制
2|55
27――1 個位
13――1 第二位
6――1 第三位
3――0 第四位
1――1 第五位
最後被除數1為第七位,即得110111
二、十進位制轉八進位制
如:5621轉為八進位制
8|5621
702 ―― 5 第一位(個位)
87 ―― 6 第二位
10 ―― 7 第三位
1 ―― 2 第四位
最後得八進位制數:12765
三、十進位制數十六進製制
如:76521轉為十六進製制
16|76521
4782 ――9 第一位(個位)
298 ――14 即 e 第二位
18 ――10 即 a 第三位
1 ―― 2 第四位
最後得12ae9
二進位制與十六進製制的關係
2進製 0000 0001 0010 0011 0100 0101 0110 0111
16進製制 0 1 2 3 4 5 6 7
2進製 1000 1001 1010 1011 1100 1101 1110 1111
16進製制 8 9 a(10) b(11) c(12) d(13) e(14) f(15)
可以用四位數的二進位制數來代表乙個16進製制,如3a16 轉為二進位制為:
3為0011,a 為1010,合併起來為00111010。可以將最左邊的0去掉得1110102
右要將二進位制轉為16進製制,只需將二進位制的位數由右向左每四位乙個單位分隔,將各單位對照出16進製制的值即可。
二進位制與八進位制間的關係
二進位制 000 001 010 011 100 101 110 111
八進位制 0 1 2 3 4 5 6 7
二進位制與八進位制的關係類似於二進位制與十六進製制的關係,以八進位制的各數為0到7,以三位二進位制數來表示。如要將51028 轉為二進位制,5為101,1為001,0為000,2為010,將這些數的二進位制合併後為1010010000102,即是二進位制的值。
若要將二進位制轉為八進位制,將二進位制的位數由右向左每三位乙個單位分隔,將事單位對照出八進位制的值即可。
十進位制數如何轉換為八進位制數,10進製轉8進製方法
和添錦 一般我都會先轉為二進位制,然後再轉為八進位制。例如十進位制27,在進行轉換時我會這麼做 27介於16和32之間 16和32是2的整數次冪 那麼27 16 1 8 1 4 0 2 1 1 1 其中16,8,4,2,1均是2的整數次冪 我把16,8,4,2,1後面的乘數按從大到小寫下來 1101...
用C 編寫「輸出十進位制 八進位制 十六進製制顯示的資料
int i for i 0 i 15 i cout cout for i 1 i 15 i cout cout for i 1 i 15 i cout include void main int i char a a cout 十進位制 for i 0 i 16 i cout cout n八進位制 ...
十進位制數71 625轉換成八進位制 十六進製制 二進位制
用系統自帶的計算機 科學模式 八進位制107 十六進製制47 二進位制1000111。二進位制是計算技術中廣泛採用的一種數制。二進位制資料是用0和1兩個數碼來表示的數。它的基數為2,進製規則是 逢二進一 借位規則是 借一當二 由18世紀德國數理哲學大師萊布尼茲發現。當前的計算機系統使用的基本上是二進...