1樓:此id已成大爺
轉矩控制方式是通過外部模擬量的輸入或直接的位址的賦值來設定電機軸對外的輸出轉矩的大小,具體表現為例如10v對應5nm的話,當外部模擬量設定為5v時電機軸輸出為2.5nm:如果電機軸負載低於2.
5nm時電機正轉,外部負載等於2.5nm時電機不轉,大於2.5nm時電機反轉(通常在有重力負載情況下產生)。
二、可以通過即時的改變模擬量的設定來改變設定的力矩大小,也可通過通訊方式改變對應的位址的數值來實現。應用主要在對材質的受力有嚴格要求的纏繞和放卷的裝置中,例如饒線裝置或拉光纖裝置,轉矩的設定要根據纏繞的半徑的變化隨時更改以確保材質的受力不會隨著纏繞半徑的變化而改變。
2樓:匿名使用者
原理:轉矩控制方式是通過外部模擬量的輸入或直接的位址的賦值來設定電機軸對外的輸出轉矩的大小,具體表現為例如10v對應5nm的話,當外部模擬量設定為5v時電機軸輸出為2.5nm:
如果電機軸負載低於2.5nm時電機正轉,外部負載等於2.5nm時電機不轉,大於2.
5nm時電機反轉(通常在有重力負載情況下產生)。
可以通過即時的改變模擬量的設定來改變設定的力矩大小,也可通過通訊方式改變對應的位址的數值來實現。應用主要在對材質的受力有嚴格要求的纏繞和放卷的裝置中,例如饒線裝置或拉光纖裝置,轉矩的設定要根據纏繞的半徑的變化隨時更改以確保材質的受力不會隨著纏繞半徑的變化而改變。
一般伺服都有三種控制方式:速度控制方式,轉矩控制方式,位置控制方式 。
速度控制和轉矩控制都是用模擬量來控制的。位置控制是通過發脈衝來控制的。具體採用什麼控制方式要根據客戶的要求,滿足何種運動功能來選擇。
如果您對電機的速度、位置都沒有要求,只要輸出乙個恆轉矩,當然是用轉矩模式。如果對位置和速度有一定的精度要求,而對實時轉矩不是很關心,用轉矩模式不太方便,用速度或位置模式比較好。如果上位控制器有比較好的閉環控制功能,用速度控制效果會好一點。
如果本身要求不是很高,或者,基本沒有實時性的要求,用位置控制方式對上位控制器沒有很高的要求。就伺服驅動器的響應速度來看,轉矩模式運算量最小,驅動器對控制訊號的響應最快;位置模式運算量最大,驅動器對控制訊號的響應最慢。
3樓:青春逐夢啦啦啦
交流伺服電動機的速度控制原理是:1、轉矩控制:轉矩控制方式是通過外部模擬量的輸入或直接的位址的賦值來設定電機軸對外的輸出轉矩的大小,具體表現為例如10v對應5nm的話,當外部模擬量設定為5v時電機軸輸出為2.
5nm:如果電機軸負載低於2.5nm時電機正轉,外部負載等於2.
5nm時電機不轉,大於2.5nm時電機反轉(通常在有重力負載情況下產生)。可以通過即時的改變模擬量的設定來改變設定的力矩大小,也可通過通訊方式改變對應的位址的數值來實現。
應用主要在對材質的受力有嚴格要求的纏繞和放卷的裝置中,例如饒線裝置或拉光纖裝置,轉矩的設定要根據纏繞的半徑的變化隨時更改以確保材質的受力不會隨著纏繞半徑的變化而改變。
2、位置控制:位置控制模式一般是通過外部輸入的脈衝的頻率來確定轉動速度的大小,通過脈衝的個數來確定轉動的角度,也有些伺服可以通過通訊方式直接對速度和位移進行賦值。由於位置模式可以對速度和位置都有很嚴格的控制,所以一般應用於定位裝置。
應用領域如數控工具機、印刷機械等等。
3、速度模式:通過模擬量的輸入或脈衝的頻率都可以進行轉動速度的控制,在有上位控制裝置的外環pid控制時速度模式也可以進行定位,但必須把電機的位置訊號或直接負載的位置訊號給上位反饋以做運算用。位置模式也支援直接負載外環檢測位置訊號,此時的電機軸端的編碼器只檢測電機轉速,位置訊號就由直接的最終負載端的檢測裝置來提供了,這樣的優點在於可以減少中間傳動過程中的誤差,增加了整個系統的定位精度。
4樓:大野瘦子
交流伺服電機是通過驅動器來達到運轉的,當然不同型號的伺服電機有自身的額定轉速,而轉速的控制是通過伺服驅動器實現的。
常見的伺服驅動器調速方式有模擬電壓控制,即通過調節伺服驅動器模擬量電壓輸入控制端的差分電壓控制伺服電機運轉在不同的轉速;另一種即指令控制,通過給定指令,讓伺服達到要求的轉速;還有一種即脈衝訊號控制,通過脈衝訊號發生器或者另一套伺服產生的同步脈衝控制伺服電機的轉速。
一般伺服都有三種控制方式:速度控制方式,轉矩控制方式,位置控制方式 。
速度控制和轉矩控制都是用模擬量來控制的。位置控制是通過發脈衝來控制的。具體採用什麼控制方式要根據客戶的要求,滿足何種運動功能來選擇。
如果您對電機的速度、位置都沒有要求,只要輸出乙個恆轉矩,當然是用轉矩模式。如果對位置和速度有一定的精度要求,而對實時轉矩不是很關心,用轉矩模式不太方便,用速度或位置模式比較好。如果上位控制器有比較好的閉環控制功能,用速度控制效果會好一點。
如果本身要求不是很高,或者,基本沒有實時性的要求,用位置控制方式對上位控制器沒有很高的要求。就伺服驅動器的響應速度來看,轉矩模式運算量最小,驅動器對控制訊號的響應最快;位置模式運算量最大,驅動器對控制訊號的響應最慢。
交流伺服電機定子的構造基本上與電容分相式單相非同步電動機相似.其定子上裝有兩個位置互差90°的繞組,乙個是勵磁繞組rf,它始終接在交流電壓uf上;另乙個是控制繞組l,聯接控制訊號電壓uc。所以交流伺服電動機又稱兩個伺服電動機。
優點⑴無電刷和換向器,因此工作可靠,對維護和保養要求低。
⑵定子繞組散熱比較方便。
⑶慣量小,易於提高系統的快速性。
⑷適應於高速大力矩工作狀態。
5樓:老廉的智慧型化技術
隨著全數字式交流伺服系統的出現,交流伺服電機也越來越多地應用於數字控制系統中。為了適應數字控制的發展趨勢,運動控制系統中大多採用全數字式交流伺服電機作為執行電動機。在控制方式上用脈衝串和方向訊號實現。
一般伺服都有三種控制方式:速度控制方式,轉矩控制方式,位置控制方式 。
速度控制和轉矩控制都是用模擬量來控制的。位置控制是通過發脈衝來控制的。具體採用什麼控制方式要根據客戶的要求,滿足何種運動功能來選擇。
如果您對電機的速度、位置都沒有要求,只要輸出乙個恆轉矩,當然是用轉矩模式。
如果對位置和速度有一定的精度要求,而對實時轉矩不是很關心,用轉矩模式不太方便,用速度或位置模式比較好。如果上位控制器有比較好的閉環控制功能,用速度控制效果會好一點。如果本身要求不是很高,或者,基本沒有實時性的要求,用位置控制方式對上位控制器沒有很高的要求。
就伺服驅動器的響應速度來看,轉矩模式運算量最小,驅動器對控制訊號的響應最快;位置模式運算量最大,驅動器對控制訊號的響應最慢。
對運動中的動態效能有比較高的要求時,需要實時對電機進行調整。那麼如果控制器本身的運算速度很慢(比如plc,或低端運動控制器),就用位置方式控制。如果控制器運算速度比較快,可以用速度方式,把位置環從驅動器移到控制器上,減少驅動器的工作量,提高效率(比如大部分中高階運動控制器);如果有更好的上位控制器,還可以用轉矩方式控制,把速度環也從驅動器上移開,這一般只是高階專用控制器才能這麼幹,而且,這時完全不需要使用伺服電機。
換一種說法是:
1、轉矩控制:轉矩控制方式是通過外部模擬量的輸入或直接的位址的賦值來設定電機軸對外的輸出轉矩的大小,具體表現為例如10v對應5nm的話,當外部模擬量設定為5v時電機軸輸出為2.5nm:
如果電機軸負載低於2.5nm時電機正轉,外部負載等於2.5nm時電機不轉,大於2.
5nm時電機反轉(通常在有重力負載情況下產生)。可以通過即時的改變模擬量的設定來改變設定的力矩大小,也可通過通訊方式改變對應的位址的數值來實現。應用主要在對材質的受力有嚴格要求的纏繞和放卷的裝置中,例如饒線裝置或拉光纖裝置,轉矩的設定要根據纏繞的半徑的變化隨時更改以確保材質的受力不會隨著纏繞半徑的變化而改變。
2、位置控制:位置控制模式一般是通過外部輸入的脈衝的頻率來確定轉動速度的大小,通過脈衝的個數來確定轉動的角度,也有些伺服可以通過通訊方式直接對速度和位移進行賦值。由於位置模式可以對速度和位置都有很嚴格的控制,所以一般應用於定位裝置。
應用領域如數控工具機、印刷機械等等。
3、速度模式:通過模擬量的輸入或脈衝的頻率都可以進行轉動速度的控制,在有上位控制裝置的外環pid控制時速度模式也可以進行定位,但必須把電機的位置訊號或直接負載的位置訊號給上位反饋以做運算用。位置模式也支援直接負載外環檢測位置訊號,此時的電機軸端的編碼器只檢測電機轉速,位置訊號就由直接的最終負載端的檢測裝置來提供了,這樣的優點在於可以減少中間傳動過程中的誤差,增加了整個系統的定位精度。
6樓:匿名使用者
當然是電壓和頻率。通過輸入模擬電壓0-10v,改變模組輸出頻率。
7樓:雙木鳥人
現在主要是調節頻率來達到的,現在為了調速,最有效的方法就是變頻,這也是普遍採用的技術了,所以,一般要接變頻器來調速。
以前是通過調壓來達到的。
兩種都可以,但現在多採用變頻
交流伺服電機驅動器及其工作原理是什麼
8樓:野中莉莉
交流伺服電機的工作原理
伺服電機內部的轉子是永磁鐵,驅動器控制的u/v/w三相電形成電磁場,轉子在此磁場的作用下轉動,同時電機自帶的編碼器反饋訊號給驅動器,驅動器根據反饋值與目標值進行比較,調整轉子轉動的角度。伺服電機的精度決定於編碼器的精度(線數)。
答:伺服電動機又稱執行電動機,在自動控制系統中,用作執行元件,把所收到的電訊號轉換成電動機軸上的角位移或角速度輸出。分為直流和交流伺服電動機兩大類,其主要特點是,當訊號電壓為零時無自轉現象,轉速隨著轉矩的增加而勻速下降,
答:交流伺服要好一些,因為是正弦波控制,轉矩脈動小。直流伺服是梯形波。但直流伺服比較簡單,便宜。
永磁交流伺服電動機
20世紀80年代以來,隨著積體電路、電力電子技術和交流可變速驅動技術的發展,永磁交流伺服驅動技術有了突出的發展,各國著名電氣廠商相繼推出各自的交流伺服電動機和伺服驅動器系列產品並不斷完善和更新。交流伺服系統已成為當代高效能伺服系統的主要發展方向,使原來的直流伺服面臨被淘汰的危機。90年代以後,世界各國已經商品化了的交流伺服系統是採用全數字控制的正弦波電動機伺服驅動。
交流伺服驅動裝置在傳動領域的發展日新月異。永磁交流伺服電動機同直流伺服電動機比較,主要優點有:
⑴無電刷和換向器,因此工作可靠,對維護和保養要求低。
⑵定子繞組散熱比較方便。
⑶慣量小,易於提高系統的快速性。
⑷適應於高速大力矩工作狀態。
⑸同功率下有較小的體積和重量。
交流伺服電動機的速度是通過哪個引數控制的
三相交流伺服電機也屬於交流電機,一般分同步和非同步兩類,變頻器以前者多見,交流伺服以後者多見,但對同類的電機,變頻器與交流伺服驅動器僅從電機的調速策略來看,二者並沒有區別 例如採用高效能的磁場定位向量控制技術 都伴隨著變頻技術的發展而發展。而變頻器 通用型變頻器 其目的是在完成電機調速的基礎上,提供...
電動機的工作原理是什麼,電動機工作原理是什麼?
濟寧鈦浩機械 感應電動機又稱 非同步電動機 是將轉子置於旋轉磁場中,在旋轉磁場的作用下,獲得乙個轉動力矩,因而轉子轉動的裝置。轉子是可轉動的導體,通常多呈鼠籠狀。定子是電動機中不轉動的部分,主要任務是產生乙個旋轉磁場。旋轉磁場並不是用機械方法來實現。而是以交流電通於數對電磁鐵中,使其磁極性質迴圈改變...
電動機工作原理,電動機的基本原理
獨用御素潔 三相交流非同步電動機 工作原理 三相對稱 繞組,通入三相對稱 交流電,將 在空間產生 旋轉磁場 此磁場切割 轉子導體 將在轉子中產生 感應電動勢 及感應電流 並且轉速 低於同步速並與同步速 方向相同旋轉。用途 各種工具機,水幫浦,通風機等。優點 結構 簡單,製造容易,執行可靠,維護方便,...