1樓:匿名使用者
這個簡單,先把e^(x^2)用e^x的麥克勞林公式為1+x^2 +x^4 +... +x^(2n)+...
然後乘以x^2就得到x^2+x^4+...+x^(2n+2)+...
然後它的第n次導數就是x^n項的係數乘以n!,而當n是奇數時上述級數x^n項係數為0,當n為偶數時為1
求n階導數怎麼來
2樓:蹦迪小王子啊
^先求前幾階,再找規律。
y ' = 2sinxcosx = sin2x
y '' = 2cos2x
y ''' = -4sin2x
y^(4) = -8cos2x
一般地,y^(n) = 2^(n-1) * sin[2x+(n-1)兀/2]
例如:y=lnx/x
y'=(1-lnx)/x^2=1/x^2-lnx/x^2
y"=-2/x^3-(1-2lnx)/x^3=-3/x^3+2lnx/x^3
記y(n)=(-1)^(n+1)*[ an- n!lnx]/x^(n+1)
有y(n+1)=(-1)^n*an (n+1)/x^(n+2)+(-1)^n* n![1- (n+1)lnx]/x^(n+2)
a(n+1)=(n+1)an+n!
a1=1,a2=3,a3=11,a4=50,a5=274
擴充套件資e68a8462616964757a686964616f31333433656134料:
高階導數計算就是連續進行一階導數的計算。因此只需根據一階導數計算規則逐階求導就可以了,但從實際計算角度看,卻存在兩個方面的問題:
(1)一是對抽象函式高階導數計算,隨著求導次數的增加,中間變數的出現次數會增多,需注意識別和區分各階求導過程中的中間變數。
(2)二是逐階求導對求導次數不高時是可行的,當求導次數較高或求任意階導數時,逐階求導實際是行不通的,此時需研究專門的方法。
3樓:匿名使用者
f(x)為x的n次多項式,最高次冪是n
所以n階求導之後其餘項的導數均為0,而x^n的導數是n!
即f(x)的n階導數是n!
n階導數這個怎麼求 10
4樓:life劉賽
如圖所示,只要次數低於n,則其n階導數就是0
5樓:匿名使用者
^φ(x) = f(x) + k(x-a1)(x-a2)......(x-an)
= f(x) + k[x^n-(a1+a2+...+an)x^(n-1) +...... +(-1)^n a1a2...an]
φ^(n) (x) = f^(n) (x) + kn!
n階導數怎麼求
6樓:分分秒秒
先求一階導數,再求二階導數,…,再求n-1階導數,最後求n階導數。
可以先求部分導數,尋找規律,再用數學歸納法證明。
n階導數怎麼求?看不懂那個公式啊、能不能解釋一下
7樓:那時雨y無悔
不用抄看公式,會求一階導襲數吧,一階導數的導求就是二bai階導數,二階du導數的導數zhi就是三階……以此類推!一般不dao會要求求高階導數,如果題中讓求高階導數了,你還是一樣的方法,只是這時候一般會有規律的,你找個書上例題一看便知,那個公式不用記!
請問這個n階導數的一般表示式怎麼求? 急急急~
8樓:北嘉
1/(x-1) 的 n 階導數和 1/(x-k) (k 為常數)的 n 階導數的形式是一樣的,加常數在微分求導過程中都可以忽略(也可以認為先按複合函式求導法則對 x-k 求導,再乘以 (x-k)'=x'=1,):
[1/(x-k]'=-1/(x-k)²;[1/(x-k)]"=2!/(x-k)³;[1/(x-k)]"'=-3!/(x-k)^4;……;
[1/(x-k)]('n)=(-1)^n*n!*[1/(x-k)^(n+1)];
求函式的n階導數
9樓:西域牛仔王
y ' = 2sinxcosx = sin2xy '' = 2cos2x
y ''' = -4sin2x
y^(4) = -8cos2x
一般地,y^(n) = 2^(n-1) * sin[2x+(n-1)兀/2]
求函式n階導數的一般表示式
10樓:匿名使用者
解:y'=-(1-x)^(-1)
y''=-(1-x)^(-2)
y'''=-2!(1-x)^(-3)
。。。。。
y'^(n)=-(n-1)!(1-x)^(-n)
這題的n階導數如何求,求高階導數題
晨伴夏 答案是n!除了第一項,其他項在n次求導後都先變成常數再變成零了 n階導數的一般表示式 鎖盼盼賓逸 這個嘛,直接求起來,還有些麻煩.不過,書上一般應該有這個公式的 計算y f g 的導數公式 y f g f g f g y f g f g f g y 書上有這個公式啊,自己重新推導一下也不錯的...