1樓:匿名使用者
三角函式公式
兩角和公式
sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-sinbcosa
cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb
tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)
ctg(a+b)=(ctgactgb-1)/(ctgb+ctga) ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
倍角公式
tan2a=2tana/(1-tan2a) ctg2a=(ctg2a-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)
cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)
tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))
ctg(a/2)=√((1+cosa)/((1-cosa)) ctg(a/2)=-√((1+cosa)/((1-cosa))
和差化積
2sinacosb=sin(a+b)+sin(a-b) 2cosasinb=sin(a+b)-sin(a-b)
2cosacosb=cos(a+b)-sin(a-b) -2sinasinb=cos(a+b)-cos(a-b)
sina+sinb=2sin((a+b)/2)cos((a-b)/2 cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
tana+tanb=sin(a+b)/cosacosb tana-tanb=sin(a-b)/cosacosb
ctga+ctgbsin(a+b)/sinasinb -ctga+ctgbsin(a+b)/sinasinb
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sina=b/sinb=c/sinc=2r 注: 其中 r 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosb 注:角b是邊a和邊c的夾角
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
降冪公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
萬能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
2樓:hp女孩
三角函式:正弦公式a/sina=b/sinb=c/sinc餘弦公式:cosa=(b²+c²-a²)/2abcosb=(a²+c²-b²)/2ac
cosc=(b²+a²-a²)/2cb
等差公式:an=a1+(n-1)d p+q=ap+aq 如果三個數成等差,則當中的兩倍是旁邊兩數的和
等比 :an=a1*q(n-1) sn:s2n-sn:s3n-s2n 為等比 當中的平方是兩邊數的相乘
高一數學必修5的公式彙總
3樓:匿名使用者
三角函式公式
兩角和公式
sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-sinbcosa
cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb
tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)
ctg(a+b)=(ctgactgb-1)/(ctgb+ctga) ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
倍角公式
tan2a=2tana/(1-tan2a) ctg2a=(ctg2a-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)
cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)
tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))
ctg(a/2)=√((1+cosa)/((1-cosa)) ctg(a/2)=-√((1+cosa)/((1-cosa))
和差化積
2sinacosb=sin(a+b)+sin(a-b) 2cosasinb=sin(a+b)-sin(a-b)
2cosacosb=cos(a+b)-sin(a-b) -2sinasinb=cos(a+b)-cos(a-b)
sina+sinb=2sin((a+b)/2)cos((a-b)/2 cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
tana+tanb=sin(a+b)/cosacosb tana-tanb=sin(a-b)/cosacosb
ctga+ctgbsin(a+b)/sinasinb -ctga+ctgbsin(a+b)/sinasinb
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sina=b/sinb=c/sinc=2r 注: 其中 r 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosb 注:角b是邊a和邊c的夾角
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
降冪公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
萬能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
4樓:匿名使用者
正弦定理:a/sina=b/sinb=c/sinc=2r餘弦定理: a^2+b^2-2*a*b*cosc=c^2 a^2+c^2-2*a*c*cosb=b^2 b^2+c^2-2*b*c*cosa=a^2
等差數列的通項公式為:
an=a1+(n-1)d (1)
前n項和公式為:
sn=na1+n(n-1)d/2或sn=n(a1+an)/2(2)(1)等比數列的通項公式是:an=a1*q^(n-1)若通項公式變形為an=a1/q*q^n(n∈n*),當q>0時,則可把an看作自變數n的函式,點(n,an)是曲線y=a1/q*q^x上的一群孤立的點。
(2)求和公式:sn=na1(q=1)
sn=a1(1-q^n)/(1-q)
=(a1-a1q^n)/(1-q)
=a1/(1-q)-a1/(1-q)*q^n ( 即a-aq^n)(前提:q不等於 1)
基本不等式:根號下ab=<(a+b)/2
人教高中數學必修五所有公式 30
5樓:匿名使用者
三角函式公式
兩角和公式
sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-sinbcosa
cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb
tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)
ctg(a+b)=(ctgactgb-1)/(ctgb+ctga) ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)
倍角公式
tan2a=2tana/(1-tan2a) ctg2a=(ctg2a-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式
sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)
cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)
tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))
ctg(a/2)=√((1+cosa)/((1-cosa)) ctg(a/2)=-√((1+cosa)/((1-cosa))
和差化積
2sinacosb=sin(a+b)+sin(a-b) 2cosasinb=sin(a+b)-sin(a-b)
2cosacosb=cos(a+b)-sin(a-b) -2sinasinb=cos(a+b)-cos(a-b)
sina+sinb=2sin((a+b)/2)cos((a-b)/2 cosa+cosb=2cos((a+b)/2)sin((a-b)/2)
tana+tanb=sin(a+b)/cosacosb tana-tanb=sin(a-b)/cosacosb
ctga+ctgbsin(a+b)/sinasinb -ctga+ctgbsin(a+b)/sinasinb
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sina=b/sinb=c/sinc=2r 注: 其中 r 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosb 注:角b是邊a和邊c的夾角
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
降冪公式
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
萬能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
高一人教版必修一化學學不會啊
櫻花 把書認真的一遍!關於摩爾的學習,剛接觸都是不會的,不要害,多做點題目,時間長了自然就會了!就像你小時候接觸千克,牛頓這些單位一樣的! 矛盾人子 怎麼學不會啊。是不是概念沒理解啊。比喻吧,一摩爾就相當一打,一打啤酒有十二支,一摩爾h2o有6.023 10的23次方個水分子。不明白可以問我 初中化...
高一人教版有什麼好的教輔書啊,高一人教版有什麼好的教輔書推薦啊?
尋一朵格桑花 我用的教材幫,推薦你看一下,這本書緊跟教材,是目前同步教輔做的比較出彩的,裡邊分教材幫 方法幫 高考幫和作業幫,從接觸知識到知識的運用和拔高一步步推進,用的很是順手。 你想要哪種教輔呢,同步講解類可以用教材幫,同步刷題類的可以用一遍過,最好去書店翻一翻內容再做決定,適合自己的才是最好的...
高一必修一歷史專題一二知識點,高一人教版必修一二歷史知識點
淮域小麥 歷史要多讀課外知識,你會知道許多被隱瞞的事情,你會感興趣的 高一人教版必修一二歷史知識點 高中歷史 人教版 必修一與必修二知識點歸納。 明雲瑤 我有這個筆記但是太多字了,一本啊,不可能打出來,你有歷史問題再問我可以,打資料太難了,高一歷史必修一知識點總結 咦o小豬婆 第1課 從內外服聯盟到...