如何求反函式,有什麼公式,如何求已知函式的反函式?

時間 2021-06-27 22:12:14

1樓:特特拉姆咯哦

一、判斷反函式是否存在:

由反函式存在定理:嚴格單調函式必定有嚴格單調的反函式,並且二者單調性相同:

1、先判讀這個函式是否為單調函式,若非單調函式,則其反函式不存在。

設y=f(x)的定義域為d,值域為f(d)。如果對d中任意兩點 x₁ 和 x₂ ,當 x₁y₂,則稱 y=f(x) 在d上嚴格單調遞減。

2、再判斷該函式與它的反函式在相應區間上單調性是否一致;

滿足以上條件即反函式存在。

二、具體求法:

例如 求 y=x^2 的反函式。

x=±根號y,則 f(x) 的反函式是正負根號 x,求完後注意定義域和值域,反函式的定義域就是原函式的值域,反函式的值域就是原函式的定義域。

2樓:善言而不辯

一般是將y=f(x)轉換成x=f(y)的形式,然後將x、y互換即可如y=ln(x)→x=e^y→反函式y=e^xy=x³→x=³√y→反函式y=³√x

三角函式特殊一點,如arcsin(x)因值域為[-π/2,π/2],需要分段求(向上或向下平移):

y=sinx (-π/2≤x≤π/2)

反函式y=arcsinx

y=sinx (π/2≤x≤3π/2)

反函式y=π-arcsinx

y=sinx (3π/2≤x≤5π/2)反函式y=2π+arcsinx...

3樓:在龍興寺背誦詩歌的娥眉月

反函式就是把y換成x x換成y 之後化成y=kx的形式

4樓:大漠孤煙直

理解反函式的概念,掌握求反函式的方法步驟。 設有函式, 若變數y在函式的值域內任取一值y時, 變數x在函式的定義域內必有一值x與之對應,所以,那麼變數x是變數y的函式.這個函式用來表示,稱為函式的反函式.

  (1) 由原函式y=f(x)求出它的值域;   (2) 由原函式y=f(x)反解出x=f-1(y);  (3) 交換x,y改寫成y=f-1(x);  (4) 用f(x)的值域確定f-1(x)的定義域。 我們知道,函式y=f(x)若存在反函式,則y=f(x)與它的反函式y=f-1(x)有如下性質:   性質  若y=f-1(x)是函式y=f(x)的反函式,則有f(a)=bf-1(b)=a。

  這一性質的幾何解釋是y=f(x)與其反函式y=f-1(x)的圖象關於直線y=x對稱。

5樓:迅崎

反函式公式就一個:y=f(x) ,x=g(y)則y'=f'(x)=1/g'(y).

如y=arc sinx

y'=1/(siny)'=1/cosy=1/√ ̄(1-sin²y)=1/√ ̄(1-x²)

如何求已知函式的反函式?

6樓:高中數學莊稼地

求一個函式的反函式方法分三步

反解x,

對換x,y

求定義域。反函式的定義域是原函式的值域

y=2^x -----x=log2(y)-----y=log2(x) (x>0)

函式與反函式的影象關於y=x對稱

7樓:匿名使用者

沒有底數就是10為底,這種形式的函式往往是需要記住的,而不是“求”的,根據定義可以直接得到反函式

8樓:天才殺手鼠尾草

您好求已知函式的反函式只要把因變數和自變數交換就行了並且在平面直角座標系中 作已知函式的反函式的影象,確實是只要把圖形作一個關於直線y=x對稱的影象就行了,你的推斷是正確的哦

至於圖二這個g(x)解析式確實是錯的,猜測是多打了兩個o 應該是lg(x)/lg(2)吧

希望能幫到你

望採納謝謝

9樓:匿名使用者

根據y=f(x),求出x=g(y),然後用x代替y,y代替x,得y=g(x),那麼g(x)就是f(x)得反函式。

比如y=sinx,求出x=arcsiny,用y代替x,x代替y,得到y=arcsinx,即為反函式。

如何求反函式

胥紫桐肥翊 如何求函式y f x 的反函式?有的書上給出了一般步驟 1.確定函式y f x 的值域b 2.從y f x 中解出 x g y 3.交換 x g y 中x與y的位置得到y g x 以b為定義域的函式y g x 即為所求的反函式。我們知道 給出一個實數a,a在函式y f x 的值域b中當且...

反函式的求法。已知函式,如何求這個函式的反函式

關鍵他是我孫子 求反函式的步驟 1 反解方程,將x看成未知數,y看成已知數,解出x的值。2 將這個式子中的x,y兌換位置,就得到反函式的解析式。3 求反函式的定義域,這個是很重要的一點,反函式的定義域是原函式的值域。則轉變成求原函式的值域問題,求出了解析式,求出了定義域,就完成了反函式的求解。例如 ...

求橢圓弧長公式,如何求橢圓的弧長,公式是什麼

弧長計算公式 編輯本段 弧長的定義 在圓上過2點的一段弧的長度叫做弧長。編輯本段 弧長的計算公式 弧長公式 弧長 r 是角度 r是半徑 l n r 180 在半徑是r的圓中,因為360 的圓心角所對的弧長就等於圓周長c 2 r,所以n 圓心角所對的弧長為l n r 180。例 半徑為1cm,45 的...