1樓:匿名使用者
∫√x/[1- x^(1/3)] dx
letu= x^(1/6)
du = (1/6) x^(-5/6) dx
dx = 6u^5. du
∫[u^3/(1-u^2)] [6u^5. du]
=6∫u^8/(1-u^2) du
=6∫ [ -u^6-u^4-u^2-1 + 1/(1-u^2) ] du
=6[-(1/7)u^7 -(1/5)u^5 - (1/3)u^3 -u + arcsinu ] + c
=6[ -(1/7)x^(7/6) -(1/5)x^(5/6) - (1/3)x^(3/6) -x^(1/6) + arcsin(x^(1/6)) ] + c
consider
u^8= -u^6(1-u^2) + u^6
=-u^6(1-u^2) - u^4(1-u^2) + u^4
=-u^6(1-u^2) - u^4(1-u^2) + u^2.(1-u^2) + u^2
=-u^6(1-u^2) - u^4(1-u^2) + u^2.(1-u^2) -(1- u^2) +1
2樓:匿名使用者
解:令⁶√x=t,則x=t⁶,√x=t³,³√x=t²
∫[√x/(1-³√x)]dx
=∫[t³/(1-t²)]d(t⁶)
=∫[t³·6t⁵/(1-t²)]dt
=6∫[t⁸/(1-t²)]dt
=6∫[(t⁸-1+1)/(1-t²)]dt
=6∫[(t⁸-1)/(1-t²)]dt+6∫[1/(1-t²)]dt
=6∫[(t⁴+1)(t²+1)(t²-1)/(1-t²)]dt+3∫[1/(1-t)+ 1/(1+t)]dt
=-6∫(t⁴+1)(t²+1)dt+3∫[1/(1-t)]dt +3∫[1/(1+t)]dt
=-6∫(t⁶+t⁴+t²+1)dt-3∫[1/(1-t)]d(1-t) +3∫[1/(1+t)]d(1+t)
=-6[(1/7)t⁷+(1/5)t⁵+(1/3)t³+t]-3ln|1-t|+3ln|1+t|+c
=(30t⁷+42t⁵+70t³+210t)/35 +3ln(|(1+t)/(1-t)|) +c
=[30x^(7/6)+42x^(5/6)+70√x+210x^(1/6)]/35 +3ln(|[1+x^(1/6)]/[1-x^(1/6)]|) +c
這道數學題怎麼解,要詳細步驟,這道數學題怎麼解?
根號 1 9 x 根號x x 9 5 2解,得 根號下 1 9 x 根號下 x x 9 5 2 x 9 x x x 9 5 2設y x 9 x 原方程可化為 y 1 y 5 2 解這個方程得 y1 2 y2 1 2 當y 2時 x 9 x 2 x 3當y 1 2時 x 9 x 1 2 x 12 檢驗...
這道題怎麼做,要詳細過程,謝謝,這道數學題怎麼做?要詳細的解題思路,謝謝
1 m 2 2 4 3 m 1 m 2 8m 16 m 4 2 0 故該方程必有實數根 設該方程兩根為x1,x2且x1 x2,則ab x1,ac x2由韋達定理可知x1 x2 m 2 3 x1x2 m 1 3故 x1 x2 2 x1 x2 2 4x1x2 m 4 3 2 即x1 x2 m 4 3 因...
這道數學圓的題怎麼做?要過程,這道數學題怎麼做?要過程謝謝,
圓的面積為 則半徑為1 圓心為 1,1 圓的方程為 x 1 x 1 y 1 y 1 1 設直線方程為 y 4 k x 1 直線與圓的交點為直線方程和圓方程聯立方程組的根。由直線方程得,y 1 kx k 3,代入圓方程,得 x 1 x 1 kx k 3 kx k 3 1 整理,得 k2 1 x2 2 ...