1樓:匿名使用者
平面幾何作圖限制只能用直尺、圓規,而這裡所謂的直尺是指沒有刻度只能畫直線的尺。用直尺與圓規當然可以做出許多種之圖形,但有些圖形如正七邊形、正九邊形就做不出來。有些問題看起來好像很簡單,但真正做出來卻很困難,這些問題之中最有名的就是所謂的三大問題。
三大幾何問題是:
1.化圓為方-求作一正方形使其面積等於一已知圓;
2.三等分任意角;
3.倍立方-求作一立方體使其體積是一已知立方體的二倍。
圓與正方形都是常見的幾何圖形,但如何作乙個正方形和已知圓等面積呢?若已知圓的半徑為1則其面積為π(1)2=π,所以化圓為方的問題等於去求一正方形其面積為π,也就是用尺規做出長度為π1/2的線段(或者是π的線段)。
三大問題的第二個是三等分乙個角的問題。對於某些角如90。、180。
三等分並不難,但是否所有角都可以三等分呢?例如60。,若能三等分則可以做出20。
的角,那麼正18邊形及正九邊形也都可以做出來了(注:圓內接一正十八邊形每一邊所對的圓周角為360。/18=20。
)。其實三等分角的問題是由求作正多邊形這一類問題所引起來的。
第三個問題是倍立方。埃拉託塞尼(西元前276年~西元前195年)曾經記述乙個神話提到說有乙個先知者得到神諭必須將立方形的祭壇的體積加倍,有人主張將每邊長加倍,但我們都知道那是錯誤的,因為體積已經變成原來的8倍。
這些問題困擾數學家一千多年都不得其解,而實際上這三大問題都不可能用直尺圓規經有限步驟可解決的。
2023年笛卡兒建立解析幾何以後,許多幾何問題都可以轉化為代數問題來研究。2023年旺策爾(wantzel)給出三等分任一角及倍立方不可能用尺規作圖的證明。2023年林得曼(linderman)也證明了π的超越性(即π不為任何整數係數多次式的根),化圓為方的不可能性也得以確立。
2樓:
是尺規作圖三大難題吧
化圓為方 三等分角 立方倍積
尺規作圖三大難題是什麼,古希臘的“幾何作圖三大難題”是什麼?
古希臘人用尺規作圖,主要目的在於訓練智力,培養邏輯思維能力,所以對作圖的工具有嚴格的限制 他們規定作圖只能用直尺和圓規,而他們所謂的直尺是沒有刻度的 正是在這種嚴格的限制下,產生了種種難題 尺規作圖相傳神話中的一個國王對兒子給他造的墳墓不滿意,命令把墳墓擴大一倍,但是當時的工匠都不知如何解決 後來,...
古代三大幾何難題是哪,古代三大幾何難題是哪三個???
平面幾何作圖限制只能用直尺 圓規,而這裡所謂的直尺是指沒有刻度只能畫直線的尺。用直尺與圓規當然可以做出許多種之圖形,但有些圖形如正七邊形 正九邊形就做不出來。有些問題看起來好像很簡單,但真正做出來卻很困難,這些問題之中最有名的就是所謂的三大問題。三大幾何問題是 1.化圓為方 求作一正方形使其面積等於...
當代人類面臨的三大難題是什麼,目前人類面臨的三大問題是( )( n
首先,很高興為你回答問題!1 全球變暖 2 人口分佈不平衡,糧食緊張!3 戰爭危機! 1.自己的學業 2.自己的事業 3.自己的家人如何幸福 人口膨脹 資源短缺 環境惡化 目前人類面臨的三大問題是 n. 波士商學教育 人口膨脹 環境汙染 資源短缺 這是書上寫的,但是不一樣版本的教材可能表述有所不同。...