經典的數學問題,誰知道,100個經典數學問題是什麼

時間 2022-03-01 09:40:09

1樓:匿名使用者

設兩者長為a,b,那麼ab為常數,有基本不等式得:

a+b>=2根號下(ab)等號當且僅當a=b時成立。

沒學過基本不等式?沒關係,我來證明:

取a>=0,b>=0

顯然(a-b)^2>=0 此式當且僅當a=b時取等號所以a^2+b^2>=2ab 此式當且僅當a=b時取等號把a^2看成整體a,b^2看成整體b,

則有a+b>=2根號下(ab)此式當且僅當a=b時取等號證到了吧

下面的方法也可以~~~:

設長度分別為a、b,所以乘積為ab=常數

和為a+b

要想a+b達最小值,則(a+b)的平方也是最小值,即(a+b)^2=a^2+2ab+b^2最小又因為a^2+2ab+b^2=a^2-2ab+b^2+4ab=(a-b)^2+4ab

要想(a-b)^2+4ab最小,由於ab為常數,所4ab也為常數,所以必須(a-b)^2最小,又因為(a-b)^2≥0,所以其最小值為0,即(a-b)^2=0,所以a-b=0,即a=b。

2樓:匿名使用者

同志,你認為這是一道難題? 根本不需要圖,完全是一道簡單的代數不等式題目!

其實這道題可以演化為 a>0, b>0, ab=c, 求 a+b的最小值

a+b>=2(ab)^(1/2)=2c^(1/2), 當a=b=c^(1/2)的時候『=』成立 -----(1)

那麼就剩下證明(1)成立了,其實這和證明 a^2 + b^2 >= 2ab等價

顯然 (a-b)^2 >=0, 當a=b的時候『=』成立

那麼 a^2 - 2ab + b^2 >=0, 那麼 a^2 + b^2 >= 2ab, 當a=b的時候=成立

至此,命題得證

3樓:莞爾魚

怎麼放到電影分類了? 應該去數學類啊

4樓:匿名使用者

對設線段分別為a和b,則ab=c(c為常數)即√(ab)=√c

(√a-√b)^2≥0

a+b-2*√(ab)≥0

a+b≥2*√(ab)

又因為√(ab)為常數

所以a+b≥√c

當且僅當a=b時=成立

所以a b相等時和最小

100個經典數學問題是什麼

乙個經典的數學問題

5樓:匿名使用者

其實,這其中根本就沒存在那「一元錢」,提問者只是利用了人的定向思維,沿著一條思路,將讀者領入思維誤區。數應是這樣算:30元,一人退1元,即每人出9元,3乘9=27,給了25元房費,服務員扣了2元。

6樓:

定向思維陷阱,這1元不存在,要反向思維想,他們付了9*3=27元其實只用付25元,另外多付2元被服務員拿走了就行了

7樓:網路智水

錯誤包含了,那服務員的2元應該是包含在27元里的啊。應該是吧檯的25元+服務員私自留下的2元=27=3*9

8樓:匿名使用者

他們最早拿出來的是30元,但後來沒人又收回1元,所以實際一共就拿出27元,這27元中25元付餐,還有2元給服務員消費咯

不要被問題的思路干擾了邏輯

9樓:匿名使用者

因為25元,均攤給三個人,每人並不是8元

10樓:

每人並不是花9元,而是(25+3)/3

11樓:吉普賽之夢

27元中包括服務員私自留下的2元,應該減去 不該加

27-2=25 就是飯錢

經典數學問題

12樓:匿名使用者

答:那一元沒有少。解釋如下:

29元,計算錯誤(即偷換概念),因為三個人總共交了27元,此27元是老闆的25元加上服務員的2元,在此基礎上不應該是加服務員的2元,而應該加服務員還給他們的3元。

此處將「自己留下2元,分給那三個人每人1元」,誤導為「自己留下3元,分給那三個人2元」。

30元中,2元給了服務員,25元給了老闆,3元給回那三個人。

13樓:

這是混淆邏輯的,題目把付錢的金額和得到錢的金額加在一起了正確的演算法:

1 得到錢 三個人每人最後得了1元: 計3元服務生得2元 : 計2元老闆得到了25元 :

計25元 共計30元2付出的錢 三個人: (10-1)*3=27元老闆得到了 25元 服務生得到了2元 2+25=27

14樓:

27元里已經包含服務員留下的2元了,怎麼是加法呀,是減法,27-2=25 歸老闆了。

15樓:夢龍軋

計算錯誤(即偷換概念),因為三個人總共交了27元,此27元是老闆的25元加上服務員的2元,在此基礎上不應該是加服務員的2元,而應該加服務員還給他們的3元。

16樓:潘寅旭

這純屬扯淡,只是偷換概念,服務員拿的2元錢包括在這三個共交的27元內(9*3=27),所以應是27-2=25,才是他們交的房錢。

17樓:匿名使用者

偷換概念

不能那麼算

這些錢加起來不是總數的

18樓:悠悠漫漫

沒有少呀,每人交了十元,推給三元相當於每人交了九元,三九二十七再加上退給的三元不是三十嗎?

19樓:

牛吃草問題 上面所的差不多了。我來盈虧問題啊

一、 複習:

二、 匯入:17個球,放到3個盤子裡。每個盤子裡放4個,多幾個?

每個盤子裡放5個呢?每個盤子裡放6個呢?

三、 新課:

例1. 把球放到盤子裡,如果每個盤子裡放4個,還剩6個;如果每個盤子裡放5個,缺2個,問有幾個盤子?多少個球?

(6+2)÷(5-4)=8(個)

8×4+6=38(個)

練習:「如果每個盤子裡放5個」改「如果每個盤子裡放6個」

(6+2)÷(6-4)=4(個) 4×4+6=22(個)

練習:三年一班參加搬磚勞動,如果每人搬4塊,還剩7塊;如果每人搬5塊,則少

2塊。有多少人?多少塊磚?(9人,43塊磚)

練習:四年(一)班同學去植樹,如果每人植6棵,則餘7棵,如果每人植8棵,則缺3棵,

一共有多少個同學?有多少棵樹?(5人,37棵樹)

小結:總差÷個差=總份數

一盈一虧:總差=盈+虧

練習:媽媽買回一筐蘋果,按計畫吃的天數算了一下,如果每天吃4個,要多出48

個蘋果;如果每天吃6個,則又少8個蘋果,共有蘋果多少個?計畫吃幾天?

(28天,160個)

例2. 媽媽買回一筐蘋果,按計畫吃的天數算了一下,如果每天吃4個,要多出48個蘋果;如果每天吃6個,則還多出8個蘋果,共有蘋果多少個?計畫吃幾天?

(48-8)÷(6-4)=20(天) 4×20+48=128(個)

小結:兩盈:總差==大盈-小盈

練習:老師給小朋友分糖,如果每人分8塊糖,則多26塊,如果每人分10塊則多6塊。問有

多少人多少塊糖?(10人,106塊糖)

例3. 老師給小朋友分糖,如果每人分8塊糖,則少16塊,如果每人分10塊則少30塊,問有多少人多少塊糖?

(30-16)÷(10-8)=7(人) 8×7-16=40(塊)

小結:兩虧:總差=大虧-小虧

練習:某校學生排隊上操,如果每行站9人,則少27人;如果每行站12人,則少66

人,一共有多少名學生?(144)

例4. 孫悟空分桃,如果每只猴8個桃,則剩15個;如果每只猴11個桃,正好分完。求有多少隻猴?多少個桃?

15÷(11-8)=5(只) 5×11=55(個)

練習:孫悟空分桃,如果每只猴8個桃,正好分完;如果每只猴6個桃,則剩18個。求有多

少只猴?多少個桃?(9只,72個)

例5. 孫悟空分桃,如果每只猴12個桃,則少21個;如果每只猴9個桃,正好分完。求有多少隻猴?多少個桃?

21÷(12-9)=7(只) 7×9=63(個)

練習:孫悟空分桃,如果每只猴8個桃,正好分完;如果每只猴12個桃,則少20個。求有多

少只猴?多少個桃?(5只,40個)

小結:一盈一正好:總差=盈

一虧一正好:總差=虧

例6. 開放練習:

①孫悟空分桃,如果每只猴8個桃,正好分完;如果每只猴10個桃,則

求有多少隻猴?多少個桃?

②孫悟空分桃,如果每只猴8個桃, ;如果每只猴14個桃,則正好分完,求有多少隻猴?多少個桃?

③孫悟空分桃,如果每只猴8個桃, ;如果每只猴12個桃, ,求有多

少只猴?多少個桃?

第二次課:

例1. 學校規定上午8時到校,小明去上學,如果每分走60公尺,可提早10分到校;如果每分走50公尺,可提早8分到校,求他幾時幾分從家出發正好8時到校?由家到學校的路程是多少公尺?

(60×10-50×8)÷(60-50)=20(分)

60×(20-10)=600(公尺)或50×(20-8)=600(公尺)

練習:小麗從家出發上學去,如果每分鐘走60公尺,則遲到6分鐘,如果每分鐘走80公尺,則可

以提前3分鐘到校。求從家出發需要走多少分鐘準時到校?小麗家距學校有多少公尺?

(60×6+80×3)÷(80-60)=30(分) 60×(30+6)=2160(公尺)

練習:李師傅加工一批零件,如果每天做50個,要比原計畫晚8天完成;如果每天做60個,就可以提前5天完成。這批零件共有多少個?

(50×8+60×5)÷(60-50)=70(天) 50×(70+8)=3900(個)

例2. 某校安排學生宿舍,如果每間5人,那麼有14人沒有床位,如果每間7人,那麼多出4個空床位,問宿舍幾間?學生幾人?

14人沒有床位=多14人 多出4個空床位=少4人

(14+4)÷(7-5)=9(間) 9×5+14=59(人)

練習:某校安排學生宿舍,如果每間6人,那麼有15人沒有床位,如果每間9人,那麼有3人沒有床位,問宿舍幾間?學生幾人?(4間,39人)

例3. 某校安排學生宿舍,如果每間5人,那麼有16人沒有床位,如果每間7人則空出2間宿舍,問宿舍幾間?學生幾人?

空出2間宿舍=少2×7=14人

(16+2×7)÷(7-5)=15(間)15×5+16=91(人)或(15-2)×7=91(人)

練習:某校安排學生宿舍,如果每間3人,那麼有23人沒有床位,如果每間5人則空出3間宿

舍,問宿舍幾間?學生幾人?(19間,80人)

練習:學生乘車春遊,如果每車坐65人,則有5人不能乘上車;如果每車多坐5人,恰多餘了

1輛車,問一共有幾輛車?有多少人?

(65+5+5)÷5=15(輛)

65×15+5=980(人)或 (65+5)×(15-1)=980(人)

練習:一列火車裝運一批貨物,原來每節車皮平均裝46噸,結果有100噸貨物未能裝進去;後來改進裝車方法,使每節車皮多裝4噸,結果這批貨物裝完後,還剩下兩節空車皮,問這列火車有多少節車皮?這批貨物有多少噸?

[(46+4)×2+100] ÷4=50(節)

46×50+100=2400(噸)或 (46+4)×(50-2)=2400(噸)

小結:先轉化,再比較

例4. 植樹節種樹,如果每人種5棵,還有3棵樹每人種。如果其中2人各種4棵,其餘的人各種6棵,正好種完。有多少人,種多少棵樹?

先統一:統一成全種4棵呢?還是全種6棵呢?

「個人服從集體」統一全種6棵

再轉化:全種6棵,少(6-4)×2=4(棵)

後比較:(3+4)÷(6-5)=7(人) 5×7+3=38(棵)

3÷(6-5)+2+2=7(人)

練習:農民鋤草,每人各鋤4畝,這樣分配後餘下26畝沒有人鋤草;如果其中3人每人各鋤3畝,餘下的人各鋤5畝,最後還少3畝。求有多少畝地,多少人?

[(5-3)×3+3+26] ÷(5-4)=35(人)

4×35+26=166(畝)

(26+3)÷(5-4)+3+3=35(人)

小結:1、先統一,再轉化,後比較

2、畫圖法

四、總結:

五、作業:

數學問題的解答,數學問題的解答? 100

寸美曼後章 其實數學上不應該搞題海戰術,因為在數學中題目可以有千萬種變化,只要題目稍微變一變,你就可能轉不出來了。但是適當的做一些對自己來說比較難的題目可以使你的大腦活躍起來,也可以是自己的數學水平更上一層樓!做題時儘量把題目的內容和自己平時學到的有關的知識聯絡起來。例如有一道題是關於圓的,那麼你可...

誰知道「冷笑話」,誰知道最經典的冷笑話

冷笑話是指笑話本身因為無聊 諧音字 翻譯 或省去主語 不同邏輯 斷語或特殊內容等問題,或由於表演者語氣或表情等原因,導致乙個笑話不能達到好笑的目的,較難引人發笑而成冷場,不過並不代表笑話本身沉悶,這也是幽默的一種表現。另外,冷笑話是笑話的一種,但是又有很大的不同,冷笑話的四個主要特點分別是以網路為載...

無厘頭的數學問題,乙個無厘頭的數學問題

由題意可得 設船的速度為x,水的速度為y,上海到重慶距離為a,木排從重慶順流漂到上海要t天 由從上海到重慶為逆流行使,速度為x y 則7 x y a 1式 由從重慶到上海為順流行使,速度為x y 則5 x y a 2式 由1,2可得7 x y 5 x y 得x 6y,則a 35y 3式 一木排從重慶...