1樓:
設α為任意角,終邊相同的角的同一三角函式的值相等:對於x軸正半軸為起點軸而言
弧度制下的角的表示:
sin(2kπ+α)=sinα (k∈z)cos(2kπ+α)=cosα (k∈z)tan(2kπ+α)=tanα (k∈z)cot(2kπ+α)=cotα (k∈z)sec(2kπ+α)=secα (k∈z)csc(2kπ+α)=cscα (k∈z)角度制下的角的表示:
sin (α+k·360°)=sinα(k∈z)cos(α+k·360°)=cosα(k∈z)tan (α+k·360°)=tanα(k∈z)cot(α+k·360°)=cotα (k∈z)sec(α+k·360°)=secα (k∈z)csc(α+k·360°)=cscα (k∈z)[3]公式二設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:對於x軸負半軸為起點軸而言
弧度制下的角的表示:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sec(π+α)=-secα
csc(π+α)=-cscα
角度制下的角的表示:
sin(180°+α)=-sinα
cos(180°+α)=-cosα
tan(180°+α)=tanα
cot(180°+α)=cotα
sec(180°+α)=-secα
csc(180°+α)=-cscα[3]
公式三任意角α與 -α的三角函式值之間的關係:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sec(-α)=secα
csc (-α)=-cscα[3]
公式四利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:
弧度制下的角的表示:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sec(π-α)=-secα
csc(π-α)=cscα
角度制下的角的表示:
sin(180°-α)=sinα
cos(180°-α)=-cosα
tan(180°-α)=-tanα
cot(180°-α)=-cotα
sec(180°-α)=-secα
csc(180°-α)=cscα[3]
公式五利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:
弧度制下的角的表示:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sec(2π-α)=secα
csc(2π-α)=-cscα
角度制下的角的表示:
sin(360°-α)=-sinα
cos(360°-α)=cosα
tan(360°-α)=-tanα
cot(360°-α)=-cotα
sec(360°-α)=secα
csc(360°-α)=-cscα[3]
公式六π/2±α 及3π/2±α與α的三角函式值之間的關係:(⒈~⒋)
⒈ π/2+α與α的三角函式值之間的關係
弧度制下的角的表示:
sin(π/2+α)=cosα
cos(π/2+α)=—sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sec(π/2+α)=-cscα
csc(π/2+α)=secα
角度制下的角的表示:
sin(90°+α)=cosα
cos(90°+α)=-sinα
tan(90°+α)=-cotα
cot(90°+α)=-tanα
sec(90°+α)=-cscα
csc(90°+α)=secα[3]
⒉ π/2-α與α的三角函式值之間的關係
弧度制下的角的表示:
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sec(π/2-α)=cscα
csc(π/2-α)=secα
角度制下的角的表示:
sin (90°-α)=cosα
cos (90°-α)=sinα
tan (90°-α)=cotα
cot (90°-α)=tanα
sec (90°-α)=cscα
csc (90°-α)=secα[3]
⒊ 3π/2+α與α的三角函式值之間的關係弧度制下的角的表示:
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sec(3π/2+α)=cscα
csc(3π/2+α)=-secα
角度制下的角的表示:
sin(270°+α)=-cosα
cos(270°+α)=sinα
tan(270°+α)=-cotα
cot(270°+α)=-tanα
sec(270°+α)=cscα
csc(270°+α)=-secα [3]⒋ 3π/2-α與α的三角函式值之間的關係[1-2]弧度制下的角的表示:
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sec(3π/2-α)=-cscα
csc(3π/2-α)=-secα
角度制下的角的表示:
sin(270°-α)=-cosα
cos(270°-α)=-sinα
tan(270°-α)=cotα
cot(270°-α)=tanα
sec(270°-α)=-cscα
csc(270°-α)=-secα[3]
2樓:過分摩羯
khjkhjjkkhkghjkghkkjkjkj
三角函式誘導公式的推導過程
高一這個三角函式誘導公式怎麼推導出來的
3樓:
誘導公式五通觀察實驗直接結論
利用五推六:
sin(pai/2+a)=sin((pai/2)-(-a))=cos(-a)=cosa
cos(pai/2+a)=cos((pai/2)-(-a))=sin(-a)=-sina
打 望採納
三角函式誘導公式問題,關於三角函式誘導公式的問題
以正弦函式sina來說吧,當變成sin a 時,因為 得係數為奇數,所以sin a 與sina之間可能會發生變化,我們可以設角a為第一象限的角,那麼 a 即為第三象限的角,而正弦函式在第三象限是負的,所以sin a sina 當變成sin 2 a 時,的係數為偶數,所以sin 2 a sina 而余...
三角函式的公式推導
推導公式 a b c sina sinb sinc 2r 其中,r為外接圓半徑 由正弦定理有 a sina b sinb c sinc 2r 所以a 2r sina b 2r sinb c 2r sinc 加起來a b c 2r sina sinb sinc 帶入 a b c sina sinb s...
三角函式所有的誘導公式
公式一 設 為任意角,終邊相同的角的同一三角函式的值相等 sin 2k sin k z cos 2k cos k z tan 2k tan k z cot 2k cot k z 公式二 設 為任意角,的三角函式值與 的三角函式值之間的關係 sin sin cos cos tan tan cot co...