迴圈小數怎樣寫成分數形,無限迴圈小數一定可以寫成分數形式嗎?為什麼

時間 2022-10-07 03:20:04

1樓:匿名使用者

迴圈小數分為混迴圈小數、純迴圈小數兩大類。

混迴圈小數可以*10^n(n為小數點後非迴圈位數),所以迴圈小數化為分數都可以最終通過純迴圈小數來轉化。

方法1.無限迴圈小數,先找其迴圈節(即迴圈的那幾位數字),然後將其為一等比數列、求出前n項和、取極限、化簡。

例如:0.333333……   迴圈節為3   則0.

3=3*10^(-1)+3*10^(-2)+……+3^10(-n)+……   前n項和為:30.1(1-(0.

1)^(n))/(1-0.1)   當n趨向無窮時(0.1)^(n)=0   因此0.

3333……=0.3/0.9=1/3   注意:

m^n的意義為m的n次方。

方法2:設0.3333......

,三的迴圈為x,   10x=3.3333.......   10x-x=3.

3333.......-0.3333......

(注意:迴圈節被抵消了)   9x=3   3x=1   x=1/3

第二種:如,將3.305030503050.................

(3050為迴圈節)化為分數。   解:設:

這個數的小數部分為a,這個小數表示成3+a   10000a-a=3050   9999a=3050   a=3050/9999   算到這裡後,能約分就約分,這樣就能表示迴圈部分了。再把整數部分乘分母加進去就是   (3×9999+3050)/9999   =33047/9999

還有混迴圈小數轉分數   如0.1555.....   迴圈節有一位,分母寫個9,非迴圈節有一位,在9後添個0   分子為非迴圈節+迴圈節(連線)-非迴圈節+15-1=14   14/90   約分後為7/45

2樓:

迴圈節作分子,(10^n-1) 作分母 .......10的n次方減1 n為迴圈節的位數

3樓:豌豆豆糖

迴圈節作分子,有一位小數就用10做分母,有兩位小數就用100做分母,........以此類推。

無限迴圈小數一定可以寫成分數形式嗎?為什麼

4樓:匿名使用者

因為無限迴圈小數是有理數,既然是有理數,就可以化成分數。因此需轉化成分數形式。

例如:0.333333……=0.3/0.9=1/3

5樓:皮皮鬼

因為無限迴圈小數是有理數,而有理數都可以寫為分數的形式。

如何將無限迴圈小數變成分數

6樓:暴走少女

步驟1、將無限迴圈小數分為2個部分,以你給的0.3454545...45為例,將其分0.3+0.04545...45這2個部分。

步驟2、將這2個部分分別化成分數,0.3=3/10,0.0454545...45的劃分方法....先設它為a,那麼就有:

10a=0.454545...45

1000a=45.4545....45

1000a-10a=45

990a=45

a=45/990=1/22

所以0.0454545...45=1/22步驟3、再將2個部分相加就得到該無限迴圈小數化成分數的結果了3/10+1/22=66/220+10/220=76/220=19/55

所以0.3454545...45=19/550.

45612121212...12也是一樣的方法解決(1)先分成0.456+0.

000121212...12(2)0.456=456/1000=57/125設0.

000121212...12=a

1000a=0.121212...12

100000a=12.1212...12

100000a-1000a=12

99000a=12

a=12/99000=1/8250

(3)0.4561212...12=57/125+1/8250=3762/8250+1/8250=3763/8250

7樓:丙豔卉

無限小數可按照小數部分是否迴圈分成兩類:無限迴圈小數和無限不迴圈小數。無限不迴圈小數不能化分數,這在中學將會得到詳盡的解釋;無限迴圈小數是可以化成分數的。

那麼,無限迴圈小數又是如何化分數的呢?由於它的小數部分位數是無限的,顯然不可能寫成十分之幾、百分之幾、千分之幾……的數。其實,迴圈小數化分數難就難在無限的小數字數。

所以我就從這裡入手,想辦法「剪掉」無限迴圈小數的「大尾巴」。策略就是用擴倍的方法,把無限迴圈小數擴大十倍、一百倍或一千倍……使擴大後的無限迴圈小數與原無限迴圈小數的「大尾巴」完全相同,然後這兩個數相減,「大尾巴」不就剪掉了嗎!我們來看兩個例子:

⑴ 把0.4747……和0.33……化成分數。

想1: 0.4747……×100=47.4747……

0.4747……×100-0.4747……=47.4747……-0.4747……

(100-1)×0.4747……=47

即99×0.4747…… =47

那麼 0.4747……=47/99

想2: 0.33……×10=3.33……

0.33……×10-0.33……=3.33…-0.33……

(10-1) ×0.33……=3

即9×0.33……=3

那麼0.33……=3/9=1/3

由此可見, 純迴圈小數化分數,它的小數部分可以寫成這樣的分數:純迴圈小數的迴圈節最少位數是幾,分母就是由幾個9組成的數;分子是純迴圈小數中乙個迴圈節組成的數。

⑵把0.4777……和0.325656……化成分數。

想1:0.4777……×10=4.777……①

0.4777……×100=47.77……②

用②-①即得:

0.4777……×90=47-4

所以, 0.4777……=43/90

想2:0.325656……×100=32.5656……①

0.325656……×10000=3256.56……②

用②-①即得:

0.325656……×9900=3256.5656……-32.5656……

0.325656……×9900=3256-32

所以, 0.325656……=3224/9900

8樓:會生活享人生

眾所周知,有限小數是十進分數的另一種表現形式,因此,任何乙個有限小數都可以直接寫成十分之幾、百分之幾、千分之幾……的數。那麼無限小數能否化成分數?

首先我們要明確,無限小數可按照小數部分是否迴圈分成兩類:無限迴圈小數和無限不迴圈小數。無限不迴圈小數不能化分數,這在中學將會得到詳盡的解釋;無限迴圈小數是可以化成分數的。

那麼,無限迴圈小數又是如何化分數的呢?由於它的小數部分位數是無限的,顯然不可能寫成十分之幾、百分之幾、千分之幾……的數。其實,迴圈小數化分數難就難在無限的小數字數。

所以我就從這裡入手,想辦法「剪掉」無限迴圈小數的「大尾巴」。策略就是用擴倍的方法,把無限迴圈小數擴大十倍、一百倍或一千倍……使擴大後的無限迴圈小數與原無限迴圈小數的「大尾巴」完全相同,然後這兩個數相減,「大尾巴」不就剪掉了嗎!我們來看兩個例子:

⑴ 把0.4747……和0.33……化成分數。

想1: 0.4747……×100=47.4747……

0.4747……×100-0.4747……=47.4747……-0.4747……

(100-1)×0.4747……=47

即99×0.4747…… =47

那麼 0.4747……=47/99

想2: 0.33……×10=3.33……

0.33……×10-0.33……=3.33…-0.33……

(10-1) ×0.33……=3

即9×0.33……=3

那麼0.33……=3/9=1/3

由此可見, 純迴圈小數化分數,它的小數部分可以寫成這樣的分數:純迴圈小數的迴圈節最少位數是幾,分母就是由幾個9組成的數;分子是純迴圈小數中乙個迴圈節組成的數。

⑵把0.4777……和0.325656……化成分數。

想1:0.4777……×10=4.777……①

0.4777……×100=47.77……②

用②-①即得:

0.4777……×90=47-4

所以, 0.4777……=43/90

想2:0.325656……×100=32.5656……①

0.325656……×10000=3256.56……②

用②-①即得:

0.325656……×9900=3256.5656……-32.5656……

0.325656……×9900=3256-32

所以, 0.325656……=3224/9900

9樓:勤皓軒

無限迴圈小數如何化為分數

由於小數部分位數是無限的,所以不可能寫成十分之幾、百分之幾、千分之幾……的數。轉化需要先「去掉」無限迴圈小數的「無限小數部分」。一般是用擴倍的方法,把無限迴圈小數擴大十倍、一百倍或一千倍……使擴大後的無限迴圈小數與原無限迴圈小數的「無限小數部分」完全相同,然後這兩個數相減,這樣「大尾巴」就剪掉了。

方法一:(代數法)

型別1:純迴圈小數如何化為分數

例題:如何把 0.33……和 0.4747…… 化成分數例1: 0.33……×10=3.33……

0.33……×10-0.33……=3.33……-0.33……(10-1) ×0.33……=3

即9×0.33……=3

那麼0.33……=3/9=1/3

例2:0.4747……×100=47.4747……0.4747……×100-0.4747……=47.4747……-0.4747……

(100-1)×0.4747……=47

即99×0.4747……=47

那麼 0.4747……=47/9

由此可見, 純迴圈小數化為分數,它的小數部分可以寫成這樣的分數:純迴圈小數的迴圈節最少位數是幾,分母就是由幾個9組成的數;分子是純迴圈小數中乙個迴圈節組成的數。

10樓:風向

老師問的啊?那個好人幫幫忙!謝謝

我來答暴走少女55

lv.10 2019-05-28

步驟1、將無限迴圈小數分為2個部分,以你給的0.3454545...45為例,將其分0.3+0.04545...45這2個部分。

步驟2、將這2個部分分別化成分數,0.3=3/10,0.0454545...45的劃分方法....先設它為a,那麼就有:

10a=0.454545...45

1000a=45.4545....45

1000a-10a=45

990a=45

a=45/990=1/22

所以0.0454545...45=1/22步驟3、再將2個部分相加就得到該無限迴圈小數化成分數的結果了

無限純迴圈小數怎麼化成分數,無限混迴圈小數怎麼化成分數(說清楚點)

長江結寒冰 1 純迴圈小數的化法,如,0.ab ab迴圈 ab 99 最後化簡。舉例如下 0.3 3迴圈 3 9 1 3 0.7 7迴圈 7 9 0.81 81迴圈 81 99 9 11 1.206 206迴圈 1又206 999。2 混迴圈小數的化法,如,0.abc bc迴圈 abc a 990。...

0 9迴圈如何改寫成分數,迴圈小數0 9怎樣化成分數

設a 0.9迴圈。設b 10 a 9.9。b a 9 a 9 所以a 1 即0.9迴圈 1 對於所以迴圈小數都可以這樣做 考慮0.9的迴圈是0.3迴圈的3倍 即可得到答案 1 3 3 0.9的迴圈 山西的小瘋子 0.9999999.9 0.1 0.01 0.001 0.00.1 把後面的求和 0.1...

迴圈小數化分數,怎樣化迴圈小數為分數

用極限的方法 比如0.66666 為首項為0.6,公比為0.1的數列 求極限limsn a1 1 q 2 3又如0.28888888 可以把0.08看成a1,公比為0.1 0.28888888 0.2 limsn0.08 1 0.1 18 90 設這個數的小數部分為a,這個小數表示成3 aa 0.3...