如何根據微分方程判斷是線性定常或時變還是非線性系統

時間 2021-08-11 18:15:20

1樓:一轉身丶已千年

大概明白你的意思了 你的意思就是那種直觀法對吧線性非線性,不管微分方程還是一般方程,y(t)不允許帶平方,比如dy(t)/dt可以 dy^2(t)/dt不行 二階導數也可以d^2 y(t)/dt^2 反正就是不允許y(t)這項有平方或者有開方 不允許頭頂上帶係數

時變定常 只要係數裡面帶直接跟t有關的係數就是時變 y(t)不算,什麼t,sint,e^t都是時變

靜態動態 有微分方程都是動態 沒有就是靜態

如何判斷一個微分方程是線性定常系統,還是非線性系統?

2樓:薔祀

所謂的線性定常系統,其特性有:

a、只能出現函式本身,以及函式的任何階次的導函式;

b、函式本身跟所有的導函式之間除了加減之外,不可以有任何運算;

c、函式本身跟本身、各階導函式本身跟本身,都不可以有任何加減之外的運算;

d、不允許對函式本身、各階導函式做任何形式的複合運算,例如:

若不能複合上面的條件,就是非線性系統。

擴充套件資料

線性不變系統

①齊次性

若激勵f(t)產生的響應為y(t),則激勵af(t)產生的響應即為ay(t),此性質即為齊次性。其中a為任意常數。

f(t)系統y(t),af(t)系統ay(t)

②疊加性

若激勵f1(t)與f2(t)產生的響應分別為y1(t), y2(t),則激勵f1(t)+f2(t)產生的響

應即為y1(t)+y2(t),此性質稱為疊加性。

③線性若激勵f1(t)與f2(t)產生的響應分別為y1(t), y2(t),則激勵a1f1(t)+a2f2(t)產生

的響應即為a1y1(t)+a2y2(t),此性質稱為線性。

④時不變性

若激勵f(t)產生的響應為y(t),則激勵f(t-t0)產生的響應即為y(t-t0),此性質稱為

不變性,也稱定常性或延遲性。它說明,當激勵f(t)延遲時間t0時,其響應y(t)也延

遲時間t0,且波形不變。

⑥微分性

若激勵f(t)產生的響應為y(t),則激勵f'(t)產生的響應即y'(t),此性質即為微分性。

⑦積分性

若激勵f(t)產生的響應為y(t),則激勵f(t)的積分產生的響應即為y(t)的積分。此性質稱為積分性。

3樓:

判斷一個微分方程,如果滿足齊次疊加性的即為線性方程,否則為非線性。

線性系統滿足齊次性與疊加性,即滿足f(ax+by)=af(x)+bf(y),其中,a,b為常數。

所謂的線性微分方程是指微分變數(y)和微分運算元(dy/dx)的冪都是1次的微分方程。它的通解滿足線性疊加原理。

簡單的例子:y'''+y''+y'+y=0是線性的,但y'''+y''+(y')^2+y=0,或者y'''+y''+y'+y^2=0都不是線性的,因為有2次元素的存在。

對於一階微分方程,形如:

y'+p(x)y+q(x)=0的稱為"線性"

例如:y'=sin(x)y是線性的

但y'=y^2不是線性的

線性定常系統,又稱之為線性時不變系統,滿足線性性與時不變性。

非線性系統:一個系統,如果其輸出不與其輸入成正比,則它是非線性的。從數學上看,非線性系統的特徵是疊加原理不再成立。

疊加原理是指描述系統的方程的兩個解之和仍為其解。疊加原理可以通過兩種方式失效。其一,方程本身是非線性的。

其二,方程本身雖然是線性的,但邊界是未知的或運動的。

4樓:靖雋

如果滿足齊次疊加性的即為線性方程,否則為非線性。

5樓:20100609姿

一定滿足這兩個公式 1、滿足:t[x1(n)+x2(n)]=y1(n)+y2(n);

2、滿足:t[ax1(n)]=ay1(n);

系統的輸入、輸出之間滿足線性疊加原理的系統成為線性系統。

6樓:匿名使用者

線性系統滿足齊次性與疊加性,即滿足f(ax+by)=af(x)+bf(y),其中,a,b為常數

如何判斷一個微分方程是線性定常系統?

7樓:花花

如果右端函式f對未知函式y和它的各階導數的全體而言是一次的,則稱為線性方程y' + p(x)y = q(x)y' 和 y 都是一次的。

看y,y',y'',即y以及y的導數的次數,如果全是1次的,則是線性,否則是非線性y''+x²y+x=0線性x²y'+(x-1)y+sinx=0線性(y')²+x=0非線性y'+y²+x=0非線性m * [y(x)]'' + t * siny = 0這個方程中含y的項是siny,這是一個非線性項,所以這個微分方程是非線性的。

如何判斷一個微分方程是線性定常系統,還是非線性系統

8樓:du知道君

所謂的線性微分方程 linear differential differentiation,其中

a、只能出現函式本身,以及函式的任何階次的導函式;

b、函式本身跟所有的導函式之間除了加減之外,不可以有任何運算;

c、函式本身跟本身、各階導函式本身跟本身,都不可以有任何加減之外的運算;

d、不允許對函式本身、各階導函式做任何形式的複合運算,例如:

siny、cosy、tany、根號y、lny、lgx、y²、y³、y^x、x^y、、、、、

.若不能複合上面的條件,就是非線性方程 nonlinear differential differentiation..

為什麼線性定常系統的數學模型是高階常係數線性微分方程

9樓:匿名使用者

要求bai是有的,但是僅僅限於

du二階三階及以上的

zhi目前一概不考dao。教育部回

頒佈的考研數學三答大綱(包括2023年的大綱,2023年的尚未公佈)就是這樣寫的:

......

3.會解二階常係數齊次線性微分方程.

4.瞭解線性微分方程解的性質及解的結構定理,會解自由項為多項式.指數函式.正弦函式.餘弦函式的二階常係數非齊次線性微分方程.

......

所以如果時間緊的話只要準備二階的就可以了

高階常係數齊次線性微分方程的特徵根怎麼求

特徵方程本身就是乙個一元方程.高階常係數齊次線性微分方程的特徵方程是乙個一元高次方程.這裡的特徵方程一定能夠得到與特徵方程的次數相同個數的解.對於一元一次和一元二次方程可以根據固定的公式得到它們的解.但對於三次或者更高次的方程來說,儘管三次的也有求根公式,但是已經相當的麻煩了.因此只能根據自己的經驗...

考研數一是否考常係數線性微分方程組

枝葉不離 數一是要求考常係數微分方程的,以下附上數一常微分方程考試要求考研數學一大綱 常微分方程部分 考試要求 1.了解微分方程及其階 解 通解 初始條件和特解等概念.2.掌握變數可分離的微分方程及一階線性微分方程的解法.3.會解齊次微分方程 伯努利方程和全微分方程,會用簡單的變數代換解某些微分方程...

二階常係數線性微分方程y y 0的通解

胖大熙 二階常係數線性微分方程y y 0的通解為 xex x 2。因為常係數線性齊次微分方程y y 0的通解為 y c1 c2 x ex,故 r1 r2 1為其特徵方程的重根,且其特徵方程為 r 1 2 r2 2r 1,對於非齊次微分方程為y 2y y x,設其特解為 y ax b,代入y 2y y...