1樓:匿名使用者
本金是a,第一年後是a(1+k),第二年是a(1+k)(1+k)所以每年的本金數是一個等比數列,首相是a(1+k),公比是1+k所以n年後錢數為
sn=a(1+k)[1-(1+k)^n]/[1-(1+k)]=a(1+k)[1-(1+k)^n]/-k=a(1+k)[(1+k)^n-1]/k
此時減去本金,即為利息
所以利息=a(1+k)[(1+k)^n-1]/k-a
2樓:匿名使用者
第一年可得 a*(1+k)
第二年可得 [a*(1+k)+a]*(1+k)=a*(1+k)²+a*(1+k)
第三年可得 *(1+k)=a*(1+k)³+a*(1+k)²+a*(1+k)
……第n年可得 a*(1+k)^n+a*(1+k)^(n-1)+……+a*(1+k)³+a*(1+k)²+a*(1+k)
s=a*(1+k)^n+a*(1+k)^(n-1)+……+a*(1+k)³+a*(1+k)²+a*(1+k)
=a*(1+k)[(1+k)^(n-1)+(1+k)^(n-2)+……+(1+k)+1]
=a*(1+k)
=a*(1+k)
=a*(1+k)*
不明白的再hi我
強調一下 k是利率 a是本金 兩個不同數量級 怎麼會有k-a出現 那裡是不正確的
如果只算利息
利息=}-na 每年都存了a 一共n 年
3樓:匿名使用者
本金為a,1年後是本息和a(1+k)再存入a第三年是a(1+k)和a(1+k)^2的和,再存入a 每年存入的本息和 是公比為 (1+k)的等比數列
sn=a(1+k)[1-(1+k)^n]/[1-(1+k)]=[a(1+k)^n-a(1+k)]/k
=[a(1+k)^n-a-ak]/k
=a[(1+k)(1+k)^n-1]/k
第n年取,這年存入的a 元不長利息減去
則s=sn-a=a[(1+k)(1+k)^(n-1)-1]/k-a應該是n-1次方,不是n 次方
4樓:匿名使用者
等比數列求和公式sn=a1(1-q^n)/(1-q)第一年 a(1+k)
第二年 (a(1+k)+a)*(1+k)= a(1+k)^2 + a(1+k)
第三年 ……
…….第n年 a(1+k)^n + a(1+k)^(n-1)+…+a(1+k)
=a(1+k)[(1+k)^(n-1) + … + 1]= a(1+k)[(1+k)^n-1]/k利息s=a*/k-a
5樓:匿名使用者
等比數列1,q,q^2,q^3,...q^n的和是[1-q^(n+1)]/(1-q)
存銀行的本金是a,第一年後是a(1+k),第二年是a(1+k)(1+k),...
顯然就是一個等比數列,利息最終收益減去本金,就能得到上述公式了。
6樓:
一年一年算的,例如你年初存a,按照這個利率年末時多少錢?a*(1+k)。讓後用這個說算第二年年末的錢a*(1+k)*(1+k),一次類推,即可算出n年後的錢,也就是這個公式。
這個式子怎麼推出來的啊?n是什麼 n-k又是什麼?那個積分為什麼等於1-q分之1??過程
7樓:匿名使用者
#1 n是什麼 n-k又是bai什麼?
n-k應該是du
筆誤吧zhi,你**dao中式子第一行專不是寫著p_k = q^(k-1)*p麼,所以n-k應該是k-1
#2 那個積屬分為什麼等於1-q分之1?
σ是求和符號,後面兩步用了一個基本的無窮級數公式:
如果不清楚的話,也可以用等比數列求和公式
財務管理中的符號代表什麼?哪位高人指點一下
利滾利的計算法,利滾利計算公式
10 每月都滾利的演算法,太噁心了。不過這裡應該是一年一滾。演算法100000 元。利滾利是指得到利息後,把利息加入本金一起生利息的高利貸的一種。計算方法 本息和 本金 1 利率 的n次方 n為結算日期的數目。複利的計算公式是 s p 1 i n 利滾利計算公式 計算公式為 copyfn p 1 i...
高利貸利滾利怎麼算,求利滾利的計算公式
高利貸預期年化利率並沒有統一的標準,預期年化利率由出借人和借款人協商而定。只要高於銀行貸款基準預期年化利率4倍的,就相當於高利貸了。高利貸的資金 都是指1元錢乙個月的月息,比如,如果說高利貸是6分利息,就相當於年預期年化利率是72 1毛則相當於年預期年化利率是120 比5.60 2015年貸款預期年...
我要乙個利滾利的計算公式,利滾利計算公式
利滾利就是復息計算法。設本金為a,月利息為r,n月後連本帶息為a a本金,x年利率,n年後的本息和 a 1 x n。利滾利計算公式 計算公式為 copyfn p 1 i n 利滾利bai 也叫複利計算法,du 基本解釋如下 複利計算法為zhi把第一年的本金dao 加利息一起算為第二年的本金,由第二年...