1樓:風清響
[x,y,z]=sphere(50); %利用sphere建立矩陣
z(z<0)=0 %把z<0的部分置為0
mesh(x,y,z) %畫上半球面
hold on;
ezmesh('1.5-x-y',[-1 1]) %畫平面x+y+z=1.5
[x,y,z]=meshgrid(linspace(-1,1));
contourslice(x,y,z,x+y+z-1.5,x,y,z,[0 0]) %畫交線
axis equal
然後你可以轉換一下視角
view(135,0)
----------------------其實簡單點這樣就行------------------
[x,y,z]=sphere(50); %利用sphere建立矩陣
z(z<0)=0 %把z<0的部分置為0
mesh(x,y,z) %畫上半球面
hold on;
ezmesh('1.5-x-y',[-1 1]) %畫平面x+y+z=1.5
axis equal
view(135,0)
2樓:匿名使用者
泡沫是一個舞蹈基礎的電子商務平臺,為從業店提供全面服務的**。
用matlab在圓域x.^2+y.^2<1畫出上半球面z=sqrt(1-x.^2-y.^2)
3樓:匿名使用者
^舉個例子,希望有所幫助。**% 用matlab在圓域x.^2+y.^2<1畫出上半球面z=sqrt(1-x.^2-y.^2)
clc; clear all; close all;
[x, y] = meshgrid(linspace(-1, 1));
z = sqrt(1-x.^2-y.^2);
z(x.^2+y.^2 >= 1) = nan;
figure;
surf(x, y, z);結果
設∑為上半球面x^2+y^2+z^2=1(z>=0)則對面積的曲面積分∫∫ds=?
4樓:匿名使用者
同學,這個被積來
函式為1呀,
那麼結源果就是相當於求上半球面的面積了。
球體的面積公式是什麼?
是4π*r的平方。
只有上半球面,而半徑r=1,於是結果是2π了。
你用1l的方法得出的結果也是一樣的,不過就會繁雜很多!
要理解曲面積分的本質哪,不能見題目就套公式!@
5樓:麼辛麼
先化成∫∫(x^2+y^2)/(1-x^2-y^2)
就把他投影到xoy平面上在利用極座標運算
如何用matlab畫出在圓域x^2+y^2<=1上畫出上半球面z=sqrt(1-x^2-y^2)的圖形。
6樓:沅江笑笑生
x=-7.5:0.5:7.5; y=x; % 先產生x及抄y二個陣列
>> [x,y]=meshgrid(x,y); % 再以襲meshgrid形成二維的網格資料
>> z=x.^2+y.^2; % 產生z軸的資料>> mesh(x,y,z) % 將z軸的變化值以網格方式畫出>> surf(x,y,z) % 將z軸的變化值以曲面方式畫出
計算拋物面z=x^2+y^2與上半球面z=(2-x^2-y^2)^1/2所圍立體的體積 10
7樓:墨汁諾
^^相交的平面baix^2+y^2=1
v=(0-2*pi)da(0-1)pdp[(2-p^2)^1/2-p^2]
v=-7/6+4*2^(1/2)/3*pi例如du:
求兩個曲面圍成的體zhi積,這dao個就是三重積分的應內用,就是被容積函式為1,積分割槽域為兩曲線圍成的區域,的三重積分。∭1dv
2式帶入1式 (消x^2+y^2)
求出z=1,
帶入2式
方程即x^2+y^2=1
8樓:匿名使用者
相交的平面x^2+y^2=1
v=(0-2*pi)da(0-1)pdp[(2-p^2)^1/2-p^2]
v=-7/6+4*2^(1/2)/3*pi
9樓:洪範周
所圍立體的體積=0.49. 如圖所示;
計算三重積分i=∫∫∫(x^2+y^2)dxdydz,其中是ω由曲面z=(x^2+y^2)^(1/2)與z=2-x^2-y^2所圍成的閉區域
10樓:曉龍修理
結果為:
解題過程如下:
求三重積分閉區域的方法:
設三元函式f(x,y,z)在區域ω上具有一階連續偏導數,將ω任意分割為n個小區域,每個小區域的直徑記為rᵢ(i=1,2,...,n),體積記為δδᵢ,||t||=max,在每個小區域內取點f(ξᵢ,ηᵢ,ζᵢ),作和式σf(ξᵢ,ηᵢ,ζᵢ)δδᵢ。
若該和式當||t||→0時的極限存在且唯一(即與ω的分割和點的選取無關),則稱該極限為函式f(x,y,z)在區域ω上的三重積分,記為∫∫∫f(x,y,z)dv,其中dv=dxdydz。
設三元函式z=f(x,y,z)定義在有界閉區域ω上將區域ω任意分成n個子域δvi(i=123…,n)並以δvi表示第i個子域的體積.在δvi上任取一點。
果空間閉區域g被有限個曲面分為有限個子閉區域,則在g上的三重積分等於各部分閉區域上三重積分的和。
先一後二法投影法,先計算豎直方向上的一豎條積分,再計算底面的積分。區域條件:對積分割槽域ω無限制;函式條件:對f(x,y,z)無限制。
先二後一法(截面法):先計算底面積分,再計算豎直方向上的積分。區域條件:
積分割槽域ω為平面或其它曲面(不包括圓柱面、圓錐面、球面)所圍成函式條件:f(x,y)僅為一個變數的函式。
11樓:匿名使用者
第四題你的寫法是對的,答案應該不是16π/3
另外,你的做法並不是柱座標系計算,而是極座標計算,下面給出柱座標系的計算,你會發現最終答案和你是一樣的
第三題的列式是對的,具體計算沒細看
12樓:匿名使用者
選用柱座標表示:0≤θ≤2pi,0≤r≤1,r2≤θ≤2-r2,
MATLAB中如何畫出x 2 y 2 z 2 1的影象
使用我們初中時候學習的參數列達式,忘記了麼?不管是圓還是球體,都可以使用參數列達式來畫圖。 印子帆 畫完一一半後,再接著畫 x,y sphere 30 z sqrt 1 y.2 x.2 plot3 x,y,z hold on plot3 x,y,z 法一 sphere axis square 法二 ...
設S是上半球面z a 2 x 2 y 2的上側(a
浩笑工坊 首先積分曲面關於xoz,yoz平面都是對稱的,而被積函式 x y 分別是關於x,y的奇函式,所以 x y 0,原積分 zds,而 z x 2 z y 2 1 x 2 z 2 y 2 z 2 1 a 2 z 2,所以積分 azdxdy z a dxdy a 3 求曲面z xy a被柱面x y...
求橢球面x2 2y2 z2 1上平行於平面x y 2z 0的切平面方程
曉龍老師 解題過程如下圖 求切平面方程的方法 設oabc是不共面的四點 則對空間任意一點p 都存在唯一的有序實陣列 x,y,z 使得op xoa yob zoc 說明 若x y z 1 則pabc四點共面 但pabc四點共面的時候,若o在平面abp內,則x y z不一定等於1,即x y z 1 是p...