1樓:夢兒寧
1.因式分解(4a+5b)² - (5a-4b)²
2.因式分解 x² - y² + 10x + 25
3.化簡後求值(1/2x+1/3y)² - (1/3x+1/2y)² - (5/6x+5/6y)(1/6x-1/6y)其中2¹º = x² = 4的y次方
4. (x-1)(x的n-1次方 + x的n-2次方 + x的n-3次方 +....+ x + 1)= x的n次方-1 例:
(x-1)(x³ + x² + x + 1)=x的4次方
根據這一規律計算1 + 2 + 2² + 2³ + 2的4次方 + 2的5次方 ....+ 2的63次方
5.提取公因式
12x平方-12x平方y-3x平方y平方
6.平方差公式
3ax四次方-3ay四次方
7.完全平方公式
25m平方+64-80m
8.分組分解
3xy-2x-12y+8
9.十字相乘法
x四次方-7x平方y平方+6y四次方
分式:加減 5x/(x+y)+y/(x+y)
乘除 b/(a平方-9)*(a+3)/(b平方-b)
混合 大括號a/(a-b)+b/(b-a)大括號*ab/(a-b)
1.因式分解x3+2x2+2x+1
2.因式分解a2b2-a2-b2+1
3.試用除法判別15x2+x-6是不是3x+2的倍式。
4.(1)判別3x+2是不是6x2+x-2的因式?(寫出計算式)
(2)如果是,請因式分解6x2+x-2。
5.a=19912 ,b=9912 ,(1)求a2-2ab+b2之值? (2)a2-b2之值?
6.判別2x+1是否4x2+8x+3的因式?如果是,請因式分解4x2+8x+3。
7.因式分解(1)3ax2-2x+3ax-2 (2)(x2-3x)+(x-3)2+2x-6。
8.設6x2-13x+k為3x-2的倍式,求k之值。
9.判別3x是不是x2之因式?(要說明理由)
10.若-2x2+ax-12,能被2x-3整除,求 (1)a=? (2)將-2x2+ax-12因式分解。
11.(1)因式分解ab-cd+ad-bc
(2)利用(1)求1990×29-1991×71+1990×71-29×1991的值。
12.利用平方差公式求1992-992=?
13.利用乘法公式求(6712 )2-(3212 )2=?
14.因式分解下列各式:
(1)(2x+3)(x-2)+(x+1)(2x+3) (2)9x2-66x+121
15.請同學用曾經學過的各種不同因式分解的方法因式分解16x2-24x+9
(1)方法1: (2)方法2:
16.因式分解下列各式:
(1)4x2-25 (2)x2-4xy+4y2 (3)利用(1)(2)之方法求a2-b2+2bc-c2
17.因式分解
(1)8x2-18 (2)x2-(a-b)x-ab
18.因式分解下列各式
(1)9x4+35x2-4 (2)x2-y2-2yz-z2
(3)a(b2-c2)-c(a2-b2)
19.因式分解(2x+1)(x+1)+(2x+1)(x-3)
20.因式分解39x2-38x+8
21.利用因式分解求(6512 )2-(3412 )2之值
22.因式分解a(b2-c2)-c(a2-b2)
23.a、b、c是整數,若a2+b2+c2+4a-8b-14c+69=0,求a+2b-3c的值
24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2
25.因式分解xy2-2xy-3x-y2-2y-1
26.因式分解4x2-6ax+18a2
27.因式分解20a3bc-9a2b2c-20ab3c
28.因式分解2ax2-5x+2ax-5
29.因式分解4x3+4x2-25x-25
30.因式分解(1-xy)2-(y-x)2
31.因式分解
(1)mx2-m2-x+1 (2)a2-2ab+b2-1
32.因式分解下列各式
(1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2
33.因式分解:xy2-2xy-3x-y2-2y-1
34.因式分解y2(x-y)+z2(y-x)
35.設x+1是2x2+ax-3的因式,(1)求a=? (2)求2x2+ax-3=0之二根
36.(1)因式分解x2+x+y2-y-2xy=?
(2)承(1)若x-y=99求x2+x+y2-y-2xy之值?
75÷〔138÷(100-54)〕 85×(95-1440÷24)
80400-(4300+870÷15) 240×78÷(154-115)
1437×27+27×563 〔75-(12+18)〕÷15
2160÷〔(83-79)×18〕 280+840÷24×5
325÷13×(266-250) 85×(95-1440÷24)
58870÷(105+20×2) 1437×27+27×563
81432÷(13×52+78) [37.85-(7.85+6.4)] ×30
156×[(17.7-7.2)÷3] (947-599)+76×64
36×(913-276÷23) [192-(54+38)]×67
[(7.1-5.6)×0.9-1.15]÷2.5 81432÷(13×52+78)
5.4÷[2.6×(3.
7-2.9)+0.62] (947-599)+76×64 60-(9.
5+28.9)]÷0.18 2.
881÷0.43-0.24×3.
5 20×[(2.44-1.8)÷0.
4+0.15] 28-(3.4 1.
25×2.4) 0.8×〔15.
5-(3.21 5.79)〕 (31.
8 3.2×4)÷5 194-64.8÷1.
8×0.9 36.72÷4.
25×9.9 3.416÷(0.
016×35) 0.8×[(10-6.76)÷1.
2](136+64)×(65-345÷23) (6.8-6.8×0.55)÷8.5
0.12× 4.8÷0.12×4.8 (58+37)÷(64-9×5)
812-700÷(9+31×11) (3.2×1.5+2.5)÷1.6
85+14×(14+208÷26) 120-36×4÷18+35
(284+16)×(512-8208÷18) 9.72×1.6-18.305÷7
4/7÷[1/3×(3/5-3/10)] (4/5+1/4)÷7/3+7/10
12.78-0÷( 13.4+156.
6 ) 37.812-700÷(9+31×11) (136+64)×(65-345÷23) 3.2×(1.
5+2.5)÷1.6
85+14×(14+208÷26) (58+37)÷(64-9×5)
(6.8-6.8×0.55)÷8.5 (284+16)×(512-8208÷18)
0.12× 4.8÷0.12×4.8 (3.2×1.5+2.5)÷1.6
120-36×4÷18+35 10.15-10.75×0.4-5.7
5.8×(3.87-0.13)+4.2×3.74 347+45×2-4160÷52
32.52-(6+9.728÷3.2)×2.5 87(58+37)÷(64-9×5)
[(7.1-5.6)×0.9-1.15] ÷2.5 (3.2×1.5+2.5)÷1.6
5.4÷[2.6×(3.7-2.9)+0.62] 12×6÷(12-7.2)-6
3.2×6+(1.5+2.5)÷1.6
5.8×(3.87-0.13)+4.2×3.74
33.02-(148.4-90.85)÷2.5
1、 提公因法
如果一個多項式的各項都含有公因式,那麼就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式。
例1、 分解因式x -2x -x(2003淮安市中考題)
x -2x -x=x(x -2x-1)
2、 應用公式法
由於分解因式與整式乘法有著互逆的關係,如果把乘法公式反過來,那麼就可以用來把某些多項式分解因式。
例2、分解因式a +4ab+4b (2003南通市中考題)
解:a +4ab+4b =(a+2b)
3、 分組分解法
要把多項式am+an+bm+bn分解因式,可以先把它前兩項分成一組,並提出公因式a,把它後兩項分成一組,並提出公因式b,從而得到a(m+n)+b(m+n),又可以提出公因式m+n,從而得到(a+b)(m+n)
例3、分解因式m +5n-mn-5m
解:m +5n-mn-5m= m -5m -mn+5n
= (m -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
4、 十字相乘法
對於mx +px+q形式的多項式,如果a×b=m,c×d=q且ac+bd=p,則多項式可因式分解為(ax+d)(bx+c)
例4、分解因式7x -19x-6
分析: 1 -3
7 22-21=-19
解:7x -19x-6=(7x+2)(x-3)
5、配方法
對於那些不能利用公式法的多項式,有的可以利用將其配成一個完全平方式,然後再利用平方差公式,就能將其因式分解。
例5、分解因式x +3x-40
解x +3x-40=x +3x+( ) -( ) -40
=(x+ ) -( )
=(x+ + )(x+ - )
=(x+8)(x-5)
6、拆、添項法
可以把多項式拆成若干部分,再用進行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b)
7、 換元法
有時在分解因式時,可以選擇多項式中的相同的部分換成另一個未知數,然後進行因式分解,最後再轉換回來。
例7、分解因式2x -x -6x -x+2
解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x
=x [2(x + )-(x+ )-6
令y=x+ , x [2(x + )-(x+ )-6
= x [2(y -2)-y-6]
= x (2y -y-10)
=x (y+2)(2y-5)
=x (x+ +2)(2x+ -5)
= (x +2x+1) (2x -5x+2)
=(x+1) (2x-1)(x-2)
8、 求根法
令多項式f(x)=0,求出其根為x ,x ,x ,……x ,則多項式可因式分解為f(x)=(x-x )(x-x )(x-x )……(x-x )
例8、分解因式2x +7x -2x -13x+6
解:令f(x)=2x +7x -2x -13x+6=0
通過綜合除法可知,f(x)=0根為 ,-3,-2,1
則2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)
9、 圖象法
令y=f(x),做出函式y=f(x)的圖象,找到函式圖象與x軸的交點x ,x ,x ,……x ,則多項式可因式分解為f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )
例9、因式分解x +2x -5x-6
解:令y= x +2x -5x-6
作出其圖象,見右圖,與x軸交點為-3,-1,2
則x +2x -5x-6=(x+1)(x+3)(x-2)
10、 主元法
先選定一個字母為主元,然後把各項按這個字母次數從高到低排列,再進行因式分解。
例10、分解因式a (b-c)+b (c-a)+c (a-b)
分析:此題可選定a為主元,將其按次數從高到低排列
解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)
=(b-c) [a -a(b+c)+bc]
=(b-c)(a-b)(a-c)
11、 利用特殊值法
將2或10代入x,求出數p,將數p分解質因數,將質因數適當的組合,並將組合後的每一個因數寫成2或10的和與差的形式,將2或10還原成x,即得因式分解式。
例11、分解因式x +9x +23x+15
解:令x=2,則x +9x +23x+15=8+36+46+15=105
將105分解成3個質因數的積,即105=3×5×7
注意到多項式中最高項的係數為1,而3、5、7分別為x+1,x+3,x+5,在x=2時的值
則x +9x +23x+15=(x+1)(x+3)(x+5)
12、待定係數法
首先判斷出分解因式的形式,然後設出相應整式的字母系數,求出字母系數,從而把多項式因式分解。
例12、分解因式x -x -5x -6x-4
分析:易知這個多項式沒有一次因式,因而只能分解為兩個二次因式。
解:設x -x -5x -6x-4=(x +ax+b)(x +cx+d)
= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd
所以 解得
則x -x -5x -6x-4 =(x +x+1)(x -2x-4
1- 14 x2
4x –2 x2 – 2
( x- y )3 –(y- x)
x2 –y2 – x + y
x2 –y2 -1 ( x + y) (x – y )
x2 + 1 x2 -2-( x -1x )2
a3-a2-2a
4m2-9n2-4m+1
3a2+bc-3ac-ab
9-x2+2xy-y2
2x2-3x-1
-2x2+5xy+2y2
10a(x-y)2-5b(y-x)
an+1-4an+4an-1
x3(2x-y)-2x+y
x(6x-1)-1
2ax-10ay+5by+6x
1-a2-ab-14 b2
a4+4
(x2+x)(x2+x-3)+2
x5y-9xy5
-4x2+3xy+2y2
4a-a5
2x2-4x+1
4y2+4y-5
3x2-7x+2
8xy(x-y)-2(y-x)3
x6-y6
x3+2xy-x-xy2
(x+y)(x+y-1)-12
4ab-(1-a2)(1-b2)
-3m2-2m+4
a2-a-6
2(y-z)+81(z-y)
9m2-6m+2n-n2
ab(c2+d2)+cd(a2+b2)
a4-3a2-4
x4+4y4
a2+2ab+b2-2a-2b+1
x2-2x-4
4x2+8x-1
2x2+4xy+y2
- m2 – n2 + 2mn + 1
(a + b)3d – 4(a + b)2cd+4(a + b)c2d
(x + a)2 – (x – a)2
–x5y – xy +2x3y
x6 – x4 – x2 + 1
(x +3) (x +2) +x2 – 9
(x –y)3 +9(x – y) –6(x – y)2
(a2 + b2 –1 )2 – 4a2b2
(ax + by)2 + (bx – ay)2
x2 + 2ax – 3a2
3a3b2c-6a2b2c2+9ab2c3
xy+6-2x-3y
x2(x-y)+y2(y-x)
2x2-(a-2b)x-ab
a4-9a2b2
ab(x2-y2)+xy(a2-b2)
(x+y)(a-b-c)+(x-y)(b+c-a)
a2-a-b2-b
(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2
(a+3)2-6(a+3)
(x+1)2(x+2)-(x+1)(x+2)2
35.因式分解x2-25= 。
36.因式分解x2-20x+100= 。
37.因式分解x2+4x+3= 。
38.因式分解4x2-12x+5= 。
39.因式分解下列各式:
(1)3ax2-6ax= 。
(2)x(x+2)-x= 。
(3)x2-4x-ax+4a= 。
(4)25x2-49= 。
(5)36x2-60x+25= 。
(6)4x2+12x+9= 。
(7)x2-9x+18= 。
(8)2x2-5x-3= 。
(9)12x2-50x+8= 。
40.因式分解(x+2)(x-3)+(x+2)(x+4)= 。
41.因式分解2ax2-3x+2ax-3= 。
42.因式分解9x2-66x+121= 。
43.因式分解8-2x2= 。
44.因式分解x2-x+14 = 。
45.因式分解9x2-30x+25= 。
46.因式分解-20x2+9x+20= 。
47.因式分解12x2-29x+15= 。
48.因式分解36x2+39x+9= 。
49.因式分解21x2-31x-22= 。
50.因式分解9x4-35x2-4= 。
51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。
52.因式分解2ax2-3x+2ax-3= 。
53.因式分解x(y+2)-x-y-1= 。
54.因式分解(x2-3x)+(x-3)2= 。
55.因式分解9x2-66x+121= 。
56.因式分解8-2x2= 。
57.因式分解x4-1= 。
58.因式分解x2+4x-xy-2y+4= 。
59.因式分解4x2-12x+5= 。
60.因式分解21x2-31x-22= 。
61.因式分解4x2+4xy+y2-4x-2y-3= 。
62.因式分解9x5-35x3-4x= 。
63.因式分解下列各式:
(1)3x2-6x= 。
(2)49x2-25= 。
(3)6x2-13x+5= 。
(4)x2+2-3x= 。
(5)12x2-23x-24= 。
(6)(x+6)(x-6)-(x-6)= 。
(7)3(x+2)(x-5)-(x+2)(x-3)= 。
(8)9x2+42x+49= 。
(1)(x+2)-2(x+2)2= 。
(2)36x2+39x+9= 。
(3)2x2+ax-6x-3a= 。
(4)22x2-31x-21= 。
70.因式分解3ax2-6ax= 。
71.因式分解(x+1)x-5x= 。
72.因式分解(2x+1)(x-3)-(2x+1)(x-5)=
73.因式分解xy+2x-5y-10=
74.因式分解x2y2-x2-y2-6xy+4=
x3+2x2+2x+1
a2b2-a2-b2+1
(1)3ax2-2x+3ax-2
(x2-3x)+(x-3)2+2x-6
1)(2x+3)(x-2)+(x+1)(2x+3)
9x2-66x+121
17.因式分解
(1)8x2-18 (2)x2-(a-b)x-ab
18.因式分解下列各式
(1)9x4+35x2-4 (2)x2-y2-2yz-z2
(3)a(b2-c2)-c(a2-b2)
19.因式分解(2x+1)(x+1)+(2x+1)(x-3)
20.因式分解39x2-38x+8
21.利用因式分解求(6512 )2-(3412 )2之值
22.因式分解a(b2-c2)-c(a2-b2)
24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2
25.因式分解xy2-2xy-3x-y2-2y-1
26.因式分解4x2-6ax+18a2
27.因式分解20a3bc-9a2b2c-20ab3c
28.因式分解2ax2-5x+2ax-5
29.因式分解4x3+4x2-25x-25
30.因式分解(1-xy)2-(y-x)2
31.因式分解
(1)mx2-m2-x+1 (2)a2-2ab+b2-1
32.因式分解下列各式
(1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2
33.因式分解:xy2-2xy-3x-y2-2y-1
34.因式分解y2(x-y)+z2(y-x)
1)因式分解x2+x+y2-y-2xy=
初二分式數學題
應有兩種情況 1 當a b c 0時,則b c a c a b a b c由a b c b c a c a b k得k 1 2 當a b c 0時 由等比性質得k a b c 2 a b c 1 2注 等比性質 如果a b c d m n b,d,m均不為0且b d n 0 那麼 a c m b d...
初二分式方程的解法,初二解分式方程十道題
號兩邊同乘最簡公分母,約去分母,使之成為乙個整式方程,解完整式方程後還要把值代入公分母檢驗,如果結果為0,那麼就稱這個解為 增根 該分式方程就無解,如果不 0,那麼,該值就為原方程的解!只要把x 1分之1 x 5分之1 x 2分之1 x 4分之1的最簡公分母,下一步就好做了,自己試試看吧。首先x 1...
求一道初二分式方程數學題,急
1 因每次只設一未知數,故分兩次求解。設甲為x月 5 x 1 9 12 1 x 1 20 x 20 甲單獨需20月 設乙為x月 1 20 1 x 1 12 1 x 2 60 x 30 乙單獨需30月 2 你確定第二問沒抄錯 若由乙單獨完成費用為3 30 90 95,故甲可以不用施工 烈炎魔咒 1 設...