求數學題(至少六題)

時間 2021-08-11 17:16:00

1樓:旅行的翼

題1、營業員把一張5元的人民幣和一張5角的人民幣換成了28張票面為1元和1角的人民幣,求換來的這兩種人民幣各多少張?

題2、有一元,二元,五元的人民幣共50張,總面值為116元,已知一元的比二元的多2張,問三種面值的人民幣各多少張?

題3、有3元,5元和7元的電影票400張,一共價值1920元,其中7元和5元的張數相等,三種**的電影票各多少張?

題4、用大、小兩種汽車運貨,每輛大汽車裝18箱,每輛小汽車裝12箱,現在有18車貨,價值3024元,若每箱便宜2元,則這批貨價值2520元,問:大、小汽車各有多少輛?

題5、一輛卡車運礦石,晴天每天可運20次,雨天每天可運12次,它一共運了112次,平均每天運14次,這幾天中有幾天是雨天?

題6、運來一批西瓜,準備分兩類賣,大的每千克0.4元,小的每千克0.3元,這樣賣這批西瓜共值290元,如果每千克西瓜降價0.

05元,這批西瓜只能賣250元,問:有多少千克大西瓜?

題7、甲、乙二人投飛鏢比賽,規定每中一次記10分,脫靶每次倒扣6分,兩人各投10次,共得152分,其中甲比乙多得16分,問:兩人各中多少次?

題8、某次數學競賽共有20條題目,每答對一題得5分,錯了一題不僅不得分,而且還要倒扣2分,這次競賽小明得了86分,問:他答對了幾道題?

1.解:設有1元的x張,1角的(28-x)張

x+0.1(28-x)=5.5

0.9x=2.7

x=328-x=25

答:有一元的3張,一角的25張。

2.解:設1元的有x張,2元的(x-2)張,5元的(52-2x)

x+2(x-2)+5(52-2x)=116

x+2x-4+260-10x=116

7x=140

x=20

x-2=18

52-2x=12

答:1元的有20張,2元18張,5元12張。

3.解:設有7元和5元各x張,3元的(400-2x)張

7x+5x+3(400-2x)=1920

12x+1200-6x=1920

6x=720

x=120

400-2x=160

答:有3元的160張,7元、5元各120張。

4.解:貨物總數:(3024-2520)÷2=252(箱)

設有大汽車x輛,小汽車(18-x)輛

18x+12(18-x)=252

18x+216-12x=252

6x=36

x=618-x=12

答:有大汽車6輛,小汽車12輛。

5.解:天數=112÷14=8天

設有x天是雨天

20(8-x)+12x=112

160-20x+12x=112

8x=48

x=6答:有6天是雨天。

6.解:西瓜數:(290-250)÷0.05=800千克

設有大西瓜x千克

0.4x+0.3(800-x)=290

0.4x+240-0.3x=290

0.1x=50

x=500

答:有大西瓜500千克。

7.解:甲得分:(152+16)÷2=84分

乙:152-84=68分

設甲中x次

10x-6(10-x)=84

10x-60+6x=84

16x=144

x=9設乙中y次

10y-6(10-y)=68

16y=128

y=8答:甲中9次,乙8次。

8.解:設他答對x道題

5x-2(20-x)=86

5x-40+2x=86

7x=126

x=18

答:他答對了18題。

2樓:黃騰龍黃自文

長方體和正方體單元題集

1:把3個長3厘公尺、寬2厘公尺、高1厘公尺的長方體拼成乙個表面積最小的長方體。這個長方體的表面積和體積各是多少?

分析:按題意,拼成乙個表面積最小的長方體,怎麼樣拼是乙個關鍵,拼的方法很多,要找到乙個拼成的長方體的表面積是最小的情況,借助實物或畫圖都可以幫助我們找到這種拼法,即:要使拼成乙個表面積最小的長方體,應盡量把原來小長方體中較大的面隱藏起來,也就是在拼的時候,把最大的面重合起來。

很顯然3×2的那乙個面最大,要重合的面就是這個面。

拼合起來的大長方體:

長是3厘公尺,寬是2厘公尺,高3厘公尺。

有了長、寬和高,就可以求表面積和體積了。

表面積:

(3×2+3×3+2×3)×2=42(平方厘公尺)

體積:3×2×3=18(立方厘公尺)

也可以通過求原來小長方體的3倍得到,因為無論怎麼樣拼體積是不變的,即現在的大長方體的體積等於原來三個小長方體的體積。3×2×1×3=18(立方厘公尺)

2:把乙個表面積是80平方分公尺的長方體平均分成兩個完全相等的正方體。每個正方體的表面積是多少?

分析:根據題意長方體可以平均分成兩個完全相等的正方體,可得這個長方體是乙個較為特殊的長方體(首先有一組面是正方形,剩下的四個面是大小相等的長方形,且兩個正方形的面能拼成乙個長方形的面。)

因此可以把每個長方形的面平均分成兩個正方形,4個長方形的面就可以分成8個正方形。

原來長方體的6個面,就可以分成10個大小相等的正方形,且正方形正好是現在分成的正方體的任意乙個面。

即:分成的正方體的乙個面的面積是

80÷10=8(平方分公尺)

正方體的表面積是6個面

8×6=48(平方分公尺)

建議畫圖或借助實物幫助分析。

3:將1公尺長的長方體木料平均鋸成兩段後,表面積增加了80平方厘公尺。原來這根木料的體積是多少立方厘公尺?

分析:關鍵理解平均鋸成兩段後表面積增加了80平方厘公尺。鋸開後增加的兩個面,也就是兩個底面。通過增加的80平方厘公尺除以2可以求出乙個底面的面積。

底面積:

80÷2=40(平方厘公尺)

底面積乘以高等於體積

體積:1公尺=100厘公尺

40×100=4000(平方厘公尺)

4:乙個正方體分成8個完全一樣的小正方體後,表面積增加了320平方厘公尺。原來這個正方體的表面積是多少?

分析:把大正方體平均分成8個小正方體,從表面上來看,每個大正方體的乙個面都平均分成了4個小正方形,而小正方形正好是小正方體的乙個面,就外觀上我們能看見的是小正方體的3個面,還有3個面則是分了以後才見的,也就是分了以後每個小正方體增加3個面,沒有分時原來的大正方體中有小正方體的3個面。以此類推,每個小正方體都是這樣的情況。

所以增加的面積實際上等於原來的大正方體的表面積。就這樣把增加的320平方厘公尺代換成了這個大正方體的表面積。

同樣建議畫圖或者利用實物找關係。不建議用320去除以8個小正方體中包含的(3×8)面,在來乘以大正方體中包含的(3×8)面。因為320÷(3×8)=13.

33……這時已出現迴圈小數,接著往下計算怎麼去算。本題只需闡述不需要用什麼算式來表現過程。

分數的加減法單元習題

李林喝了一杯牛奶的1/6,然後加滿水,又喝了一杯的1/3,再倒滿水後又喝了半杯,又加滿了水,最後把一杯都喝了。李林喝的牛奶多,還是水多?

分析:要判斷喝的牛奶多還是水多,可分別找到喝了的牛奶是多少,喝了的水是多少,

喝了的牛奶其實就是一杯,無論怎麼樣喝 的,分成幾次喝的,最終都把一杯牛奶喝完了。

把一杯牛奶看做為單位「1」, 喝了的牛奶就是「1」

喝的水我們可以通過找倒進的水去求,因為喝的水就等於倒進的水,因此關鍵是找倒進的水,

第一次:喝了一杯牛奶的1/6,然後加滿水,因此倒的水是1-1/6=5/6

第二次:喝了一杯的1/3,再倒滿水,即倒的水是1-1/3=2/3

第三次:喝了半杯,又加滿了水,倒的水是1-1/2=1/2

三次共倒的水是:5/6+2/3+1/2

很顯然三次共倒的水5/6+2/3+1/2大於1

也就是說喝的水大於1杯

然而喝的牛奶是1杯

相比較喝的水多

【人教大綱版第十冊分數的加法和減法單元】

最大公約數和最小公倍數的應用

1:兄弟三人在外地工作,大哥6天回家一次,二哥8天回家一次,小弟12天回家一次,兄弟三人同時在11日回家,三人下次見面要經過多少天?

(一):我們可以猜想,也就是進行推的過程。

兄弟三人在一天同時出發,也就是同時在一天回家。

下一次的情況:

大哥6天後第一次回家,12天後第二次回家,18天後第三次回家,24天後第四次回家,也就是大哥24天後第四次回家;

二哥8天後第一次回家,16天後第二次回家,24天後第三次回家,也就是二哥24天後第三次回家;

小弟12天後第一次回家,24天後第二次回家,也就是小弟24後第二次回家;

無論大哥、二哥和小弟是第幾次回家,24天後他們都會再一次相聚。

此方法不適合資料較大的例子,並且作為應用題過程闡述上不夠明確,實在是有點不妥當。

(二):兄弟三人同時在11日回家,三人下次見面經過的天數,應該是6的倍數,也是8的倍數,同時還是12的倍數,換句話說也就是:下次見面經過的天數是6、8和12的公倍數,而公倍數中只需求出最小公倍數(即:

第一次相聚後的下一次相聚)

6、8和12的最小公倍數是24

兄弟三人同時在11日回家,三人下次見面要經過24天。

注:問題部分「兄弟三人同時在11日回家」中的「11日」,實際與下次見面要經過的時間天數無關,它就是乙個敘述方式,乙個為了表達完整的敘述方式。

2:一張長105厘公尺、寬75厘公尺的長方形鐵皮,要分成大小完全相等的正方形鐵皮且無剩餘,這張長方形鐵皮最少可以分成多少個正方形鐵皮?

分析:要分成大小完全相等的正方形鐵皮且無剩餘,也就是正方形的邊長既是原來的長方形長的約數,也是原來的長方形寬的約數,

即:正方形的邊長是原來的長方形長和寬的公約數;

又因為是求這張長方形鐵皮最少可以分成多少個正方形鐵皮,正方形的個數最少,也就是正方形的邊長越大,回到剛才分析的正方形的邊長是原來的長方形長和寬的公約數,

而現在確切的是找邊長最大正方形,就是找原來的長方形長和寬的最大公約數作為正方形的邊長。

105和75的最大公約數是15

即:正方形的邊長:15厘公尺

正方形的個數:

(105×75)÷(15×15)=35(個)

也可以利用分解質因數中短除式中的除數和商來求正方形的個數,

105和75的除數都是15,即105和75的最大公約數是15,105的商是7(表示105按15一段來分可以分7段);75的商是5(表示75按15一段來分可以分5段)。

長分7段,寬分5段。正方形的個數是7×5=35(個)

3:有一筐蘋果,不論分給8個人,還是分給10個人,都剩3個。這筐蘋果至少有多少個?

分析:蘋果總數減去3,得到的新總數,不論分給8個人,還是分給10個人,都不剩,剛好分完。

也就是得到的蘋果新總數既是8的倍數,又是10的倍數,即8和10的公倍數,而要求這筐蘋果至少有多少個。因此只需要求8和10的最小公倍數。

8和10的最小公倍數是40

即蘋果新總數是40,再加上從蘋果總數裡減去的3,便得到蘋果總數:

也就是40+3=43(個)

注:有時間不容易理解是借助算式來幫助,如上題中有一筐蘋果,不論分給8個人,還是分給10個人,都剩3個。

可以表示為:

?÷8=商……3

?÷10=商……3

?-3=a

a能被8整除,a能被10整除,換一種敘述方式:a是8的倍數,a是10的倍數。即a是8和10的公倍數。

再接著往下分析即可。

2.5*4%0.6 0.8*4*2.5*12.5 9*2.3+1*2.3

1.正方體又叫( ),它是( )的長方體.

2.4和28的最大公約數是( ),最小公倍數是( )。

3.三個互質數的最小公倍數是165,這三個數是( )。

求數學題目!!!!求數學題!!!!!

發雙以以以以以以。求數學題!設甲的速度為x,甲跑了全程的八分之三,乙跑了全程的三分之一,甲 乙的速度比是3 8 1 3 9 8,那麼乙的速度為8 9 x 以後甲的速度不變,乙提高了速度,結果二人同時到達終點,甲 乙的速度比是5 8 2 3 15 16,乙的速度為16 15 x 16 15 x 8 9...

求數學題答案,數學題的答案

紫菲羽橙 2 細心算 7 9 2 3 2 9 1 3 1 2 1 3 1 4 13 12 15 3 8 4 5 16又7 40 4 7 2 9 4 7 2 9 1 1 6 5 6 0 1 5 3 8 4 5 11 8 3 圈出最簡分數,把其餘分數約分成最簡分數。6分 16 18 63 90 12 1...

求數學題謝

1,設蘋果樹x 則梨樹3x 4.x 3x 4 210 所以x 120,梨樹90 2.底面半徑 62.8 2 3.14 10先求體積 1 3 3.14 100 1.5 157立方公尺157 20 7.85公頃 1 梨樹x x 210 x 3 4 x 90 梨樹為90 蘋果為120 2 3.14 1.5...