極限不存在哪些情況,函式極限不存在有哪幾種情況? 10

時間 2021-08-11 17:39:55

1樓:匿名使用者

情況1、左右極限不相等。

情況2、極限為無窮。

極限某一個函式中的某一個變數,此變數在變大(或者變小)的永遠變化的過程中,逐漸向某一個確定的數值a不斷地逼近而“永遠不能夠重合到a”的過程。

極限思想是微積分的基本思想,是數學分析中的一系列重要概念,如函式的連續性、導數(為0得到極大值)以及定積分等等都是藉助於極限來定義的。

2樓:孛飛子車怡嘉

不完整。

例如dirichlet函式:

f(x)=1,

當x為有理數;

f(x)=0

,當x為無理數

在任意的x∈r,函式f(x)的左、右極限都不存在。

3樓:匿名使用者

函式在那點沒有定義,導數就不存在;不是,極限不存在並不代表導數不存在,比如x^3,它的導數為x^2,但它的極限不存在。

4樓:

函式是否右極限跟它在那一點是否有定義無關,樓上看清楚,樓主問的是極限,不是導數。

有無極限只與是否在此處的左右極限相等有關。

左右極限相等,則存在極限,否則不存在。

函式極限不存在有哪幾種情況? 10

5樓:soumns馬

極限不存在有三種情況:

1.極限為無窮,很好理解,明顯與極限存在定義相違。

2.左右極限不相等,例如分段函式。

3.沒有確定的函式值,例如lim(sinx)從0到無窮。

極限存在與否條件:

1、結果若是無窮小,無窮小就用0代入,0也是極限。

2、若是分子的極限是無窮小,分母的極限不是無窮小,答案就是0,整體的極限存在。

3、如果分子的極限不是無窮小,而分母的極限是無窮小,答案不是正無窮大,就是負無窮大,整體的極限不存在。

4、若分子分母各自的極限都是無窮小,那就必須用羅畢達方法確定最後的結果。

擴充套件資料

極限思想

極限思想方法,是數學分析乃至全部高等數學必不可少的一種重要方法,也是數學分析在初等數學的基礎上有承前啟後連貫性的、進一步的思維的發展。數學分析之所以能解決許多初等數學無法解決的問題,正是由於其採用了極限的無限逼近的思想方法。

人們通過考察某些函式的一連串數不清的越來越精密的近似值的趨向,趨勢,可以科學地把那個量的極準確值確定下來,這需要運用極限的概念和以上的極限思想方法。要相信, 用極限的思想方法是有科學性的,因為可以通過極限的函式計算方法得到極為準確的結論。

6樓:匿名使用者

極限不存在大致可以分為三種情況:

1.極限為無窮,很好理解,明顯與極限存在定義相違;

2.左右極限不相等,例如分段函式;

3.沒有確定的函式值,例如lim(sinx)從0到無窮,但要注意,sinx是有界的。。。

我這樣理解的,希望對你有幫助。。。

7樓:找罵成全你

不能證明存在 就可以反證不存在了簡單啊

8樓:匿名使用者

柯西極限存在準則又叫柯西審斂原理,給出了數列收斂的充分必要條件。

數列收斂的充分必要條件是:對於任意給定的正數ε,存在著這樣的正整數n,使得當m>n,n>n時就有

|xn-xm|<ε

這個準則的幾何意義表示,數列收斂的充分必要條件是:對於任意給定的正數ε,在數軸上一切具有足夠大號碼的點xn中,任意兩點間的距離小於ε .

充分性:cauchy列(基本列)收斂

證明:1、首先證明cauchy列有界

取e=1,根據cauchy列定義,取自然數n,當n>n時有c

|a(n)-a(n)|0,都存在n,使得m、n>n時有

|a(m)-a(n)|n,使得

|aj(k)-a|=k>n,所以凡是n>n時,我們有

|a(n)-a|=|a(n)-aj(k)|+|aj(k)-a|

這樣就證明了cauchy列收斂於a.

即得結果:cauchy列收斂

注意:1、e是表示按照讀音epslon寫的那個希臘文。

2、上面a(n)表達中,n表示下標;aj(n)中,j(n)表示a的下標,n表示j的小標。

必要性書上有

高等數學 極限不存在指什麼情況?

9樓:匿名使用者

無窮大或無窮小,

在此處無定義或不連續

比如說limf(x) 當x趨近於1- 時,極限時0當x趨近於1+ 時,極限時≠0

那麼我們就說f(x)在x=1處無極限

10樓:匿名使用者

一種是無窮大或無窮小,另一種是在此處無定義或不連續

11樓:真的沒事逛逛

指極限趨向於無窮大……

12樓:鄭

例如無限小數,射線與直線

13樓:沒事瞎比比

0/0型或 無窮/無窮 型

如何判斷極限是否存在,什麼樣的極限不存在

14樓:pasirris白沙

樓上網友的說法,確實是書

15樓:詩柳富

極限存在的兩個準則,老師教你常考題型的解釋

16樓:塞玉巧鎖黛

如何判斷極限是否存在?

1、不存在:高數中極限存在就是指極限求出來是一個具體的唯一的數2、如x趨於0時

sinx的極限是0等

3、極限不存在就是求出來不是一個確定的數

4、存在;一種是求出來為

無窮大或無窮小

如tanx當x趨於π/2時

5、另一種就是求出來是不確定的數

如sinx當x趨於無窮大時

【事實上屢見不鮮的反例】:

a、所有的暇積分,所有的廣義積分,通通、統統建立在單側極限上,能不算?誰敢不算?

b、所有的

n趨向於

無窮大型的數列極限,哪個不是單側極限?

17樓:破費特英

極限不存在是指:

極限為無窮大時,極限不存在.

左極限與右極限不相等.

極限存在是指:

存在左右極限且左極限等於右極限

函式連續

函式的值等於該點處極限值

“極限”是數學中的分支——微積分的基礎概念,廣義的“極限”是指“無限靠近而永遠不能到達”的意思。數學中的“極限”指:某一個函式中的某一個變數,此變數在變大(或者變小)的永遠變化的過程中,逐漸向某一個確定的數值a不斷地逼近而“永遠不能夠重合到a”(“永遠不能夠等於a,但是取等於a‘已經足夠取得高精度計算結果)的過程中,此變數的變化,被人為規定為“永遠靠近而不停止”、其有一個“不斷地極為靠近a點的趨勢”。

極限是一種“變化狀態”的描述。此變數永遠趨近的值a叫做“極限值”(當然也可以用其他符號表示)。

極限思想是微積分的基本思想,是數學分析中的一系列重要概念,如函式的連續性、導數(為0得到極大值)以及定積分等等都是藉助於極限來定義的。如果要問:“數學分析是一門什麼學科?

”那麼可以概括地說:“數學分析就是用極限思想來研究函式的一門學科,並且計算結果誤差小到難於想像,因此可以忽略不計。

18樓:睢可欣侯畫

判斷極限是否存在的方法是:

分別考慮左右極限。

19樓:碎夢不醒

判斷極限是否存在看趨向於的值是否是具體值,如果趨向於無窮,則極限不存在,振盪函式極限也不存在。

20樓:紫戀式

數列極限和函式極限本來就是兩個概念!

21樓:匿名使用者

如果是函式極限就是左右相等才行

22樓:

單側極限與極限是倆個概念,單側極限是否存在於極限是否存在沒有必然聯絡。

23樓:孤癲狂人

極限存在的充要條件就是左極限右極限都存在且相等。

證多元函式極限不存在常考察的幾個路徑問題

就以二元函式為例 最最經典的兩個反例記住就可以了。第一個例子,你可以記為 雙橋模型 就是兩座拱橋,一座南北向 在y軸上 一座東西向 在x軸上 兩座拱橋在頂點處交匯。抽象成數學模型,這個函式就兩條隆起的曲線,只有在x軸和y軸上有值,其他地方都是0。這樣的函式就是 可導而不連續 另一個特例是 金字塔模型...

特殊防衛存不存在防衛過當,哪些情況存在,哪些不存在,中間的界限是什麼急求啊,謝啦

正當防衛的法律概念應當是為了使國家 公共利益 本人或者他人的人身 財產和其他權利免受正在進行的不法侵害,而對不法侵害者實施的制止其不法侵害且未明顯超過必要限度的損害行為。防衛過當的法律概念是指防衛明顯超過必要限度造成重大損害應當負刑事責任的行為。正當防衛的限度條件,是指正當防衛不能明顯超過必要限度且...

高數裡面極限無窮大與不存在是什麼關係

答 1 無窮大,即 表示的是一種趨近的過程,不是一個確定的值,它是數學變數的一種性質描述,不能直接運算,也不能規定範圍,因此,都是不能確定的,也是沒有意義的。2 極限是也是一種變數的性質描述,但是在數學中,極限是有界的,是一個可以確定表述的有界值,從高斯極限存在定理開始,目前數學中已經明確的定義了極...