如何證明 任何秩為r的矩陣均可表示成r個秩為1的矩陣的和?兩個矩陣等價是什麼意思

時間 2021-08-11 17:41:09

1樓:所晨璐

證明方法有很多,這裡用一個方程的思想 r(a)=r1,r(b)=r2 r(a+b)=r3 作分塊陣(a,b),設這個分塊陣為秩為r4 顯然 r1+r2>=r4 列方程 (a,b)x=0 及 (a+b)x=0 可以知道,第一個方程的解必然是第2個方程的解。說明解空間中,第一個方程的解空間的維度 n-r4不會大於第個方程解空間的維度n-r3 即n-r4<=n-r3 r4>=r3 r1+r2>=r4>=r3 證畢

2樓:匿名使用者

因為r(a)=r,所以可以用一系列的行初等變換把a化為行階梯形b,即存在可逆陣p,使pa=b;

b中只有r行含非零元素,b可以寫成r個矩陣的和b=c1+c2+…+cr,其中ck(1≤k≤r)的第k行是b中的第k行,其餘元素都是0,易知r(ck)=1;

從而有pa=c1+c2+…+cr,兩邊左乘p^<-1>,得到a=p^<-1>c1+p^<-1>c2+…+p^<-1>cr這裡p^<-1>ck的秩為1(矩陣經初等變換,秩不變)(k=1,2,…,r)。

兩個矩陣秩相同可以說明兩個矩陣等價嗎?

3樓:lily_大力

兩個矩陣秩相同bai不可以du

說明兩個矩陣等價。

矩陣秩zhi相同只

dao是兩個專矩陣等價屬

的必要條件;兩個矩陣秩相同可以說明兩個矩陣等價的前提是必須有相同的行數和列數,即同型。

a,b矩陣同型(行數列數相同)時,有以下等價結論:

【r(a)=r(b)】 等價於 【a、b矩陣等價】 等價於 【paq=b,其中p、q可逆】。

a與b等價 ←→ a經過初等變換得到b ←→ paq=b,其中p,q可逆 ←→ r(a)=r(b),且a與b是同型矩陣。

4樓:橘子句子

[21考研必看]小侯七線代基礎09 矩陣的秩

5樓:匿名使用者

不可以a與b等價

bai ←→du a經過zhi初等變換得到b ←→ paq=b,其中p,q可逆 ←→ r(a)=r(b),且a與b是同型dao矩陣

所以我們看專出僅僅是秩相同是

屬不能說明兩個矩陣等價,必須是同型矩陣,行,列數必須相同。

例如2階矩陣a秩為2,3階矩陣b秩為2,顯然a與b不等價。

newmanhero 2023年5月8日21:48:22

希望對你有所幫助,望採納。

6樓:坑坑死一巴

a,b矩陣同型(行數列數相同)時,有以下等價結論:

【r(a)=r(b)】 等價於 【a、b矩陣等價】 等價於 【paq=b,其中p、q可逆】

7樓:鼓風

等價,但是前提是他們必須有相同的行數和列數。

8樓:獨行大俠零零七

矩陣等價的充要條件,是秩相等且同型

而向量組a、b等價,說明a、b可以互相線性表示, 充要條件是 r(a)=r(b)=r(a,b)

9樓:等待晴天

兩個矩bai陣秩相同可du以說明兩個矩陣等價,但是zhi前提是必須有相同的行數和dao列數。

矩陣(內matrix)本意是子宮、容控制中心的母體、孕育生命的地方。在數學上,矩陣是指縱橫排列的二維資料**,最早來自於方程組的係數及常數所構成的方陣。這一概念由19世紀英國數學家凱利首先提出。

設f為R上單調函式,定義g x f x 0 ,證明函式g在R上每點都右連續

麴飛睢可 解 g x 為r上週期為1的函式,則g x g x 1 函式f x x g x 在區間 0,1 正好是一個週期區間長度 的值域是 2,5 令x 1 t,當x 0,1 時,t x 1 1,2 此時,f t t g t x 1 g x 1 x 1 g x x g x 1 所以,在t 1,2 時...

如何證明職業打假人是以營利為目的

對你同乙個商品的被投訴人組成乙個群,因為購物有先後順序,既然知道東西不合格,為什麼還要繼續買繼續投訴,這樣就證明了投訴人不是消費者,並非以消費為目的 被職業打假人敲詐了怎麼辦 遇到了職業打假人敲詐應對方法 1 工商開始和你面對面,你要給工商材料,這時候你拖著不給,打假人會催促工商,工商又來催你,你就...

如何證明正弦定理比值為外接圓半徑

證明a sina b sinb c sinc 2r 任意三角形abc,作abc的外接圓o.作直徑cd交圓o於d.連線db.因為直徑所對的角是直角,所以角dbc 90度因為同弧所對的圓周角相等,所以角d等於角a.a sina bc sind cd 2r 類似可證其餘兩個等式。為什麼正弦定理即為三角形外...