設A為三階方陣,且A 4,則A 是多少

時間 2021-08-30 10:29:04

1樓:匿名使用者

243。

|a^-1| = 1/|a| = 3,又因為 a* = |a|a^-1 = (1/3)a^-1,所以 |3a*-4a^-1| = |a^-1 - 4a^-1| = | - 3a^-1| = (-3)^4 |a^-1|= 3^4 * 3= 3^5= 243。

除了對角法之外,三階行列式的計算還可以應用行列式的性質進行計算,行列式的值為任一行(或列)元素乘以代數餘子式然後作和。

行列式的值等於任一行( 或列 )元素乘以一個常數k加到另一行(或列)所生成新的行列式的值。要靈活的使用行列式的性質,儘可能讓某一行(或列)多一些零,然後並降階。

2樓:匿名使用者

|aa^(-1)|=1

|aa^(-1)|=|a||a^t|=4|a^t|=1|a^t|=1/4

特別強調,此處a^(-1)不是負1次冪,是a的逆陣,|a|是a的行列式,不是絕對值。

3樓:q加

a的負一次方 的絕對值 1/4

4樓:

因為aa*=|a| e , 所以a^-1=a*/|a|=a*/4

|a^-1|=(1/4)^3 * |a|^(3-1)=1/64 * 16=1/4有不對望指正。

設a為3階方陣,且 |a|=4,則 |(a*)^-1 |=?

5樓:匿名使用者

a*就是a伴隨,有a^-1=a*/abs(a)兩邊取行列式,有1/4=abs(a*)/(4^3)推出abs(a*)=16

所以所求矩陣為上面矩陣的逆,行列式為1/16

設a為三階方陣,且|a|=2,則|-2a|=??

6樓:顏代

|-2a|=-16。

解:因為a為三階矩陣,那麼,

|-2a|=(-2)^3*|a|=-8*|a|。

又已知|a|=2,

那麼|-2a|=-8*|a|=-8*2=-16。

即|-2a|等於-16。

7樓:匿名使用者

以我淺薄的行列式知識。。。。

|a|=2 那麼 |-2a|=-16

因為行列式求值可以列舉1~n的所有排列,以排列的逆序對個數作為-1的次數,設排列為p[1~n]則當前貢獻的值為(-1)^逆序對個數*πa[i,pi] (1<=i<=n)

對於矩陣的數乘,便有b=|-2a| => b[i,j]=-2a[i,j] 那麼就代表著 每一個排列的貢獻都乘上了個(-2)的n次方,這裡n等於3,故值為2*(-8)=-16

。。。突然發現晚了

8樓:米歐歐

|da|=d^n|a|

|-2a|=(-2)^3|a|=-16

9樓:

|-2a|=|(-2i)*a)|=|-2i|*|a|=-8*2=-16

設a為三階方陣,且|a|=2,則行列式|(a/3)^-1|等於? 要過程。謝謝。儘快啊!

線性代數問題 設三階方陣A aij(ij為下標),且r(A1,試證 1 r A 2 2 A

1 反證,當r a 0時,aij 0,則a 0,得r a 0,與r a 1矛盾.當r a 1時,a的二階子式都為零,則aij 0,得a 0,得r a 0,與r a 1矛盾 所以 r a 2 2 因為 aa a a a e a a a a a n若 a 0,則 a a n 1 0,得r a 3與r a...

線性代數題目 設三階方陣A(aij ,B aij j ,若A0,且A的伴隨矩陣

解 a11 1 a12 2 a13 3 b a21 1 a22 2 a23 3 a31 1 a32 2 a33 3 將這個行列式拆成2 個行列式的和,只有4個不為0 還有4個有對應列成比例,所以為0 a11 a12 a13 1 a12 a13 a11 2 a13 a11 a22 3 a22 a21 ...

設A為三階方陣,1,2,3為三維線性無關列向量組,且有

痐嬣 i 由已知得 a 1 2 3 2 1 2 3 a 2 1 2 1 a 3 1 3 1 又因為 1,2,3線性無關,所以 1 2 3 0,2 1 0,3 1 0,所以 1,2是a的特徵值,1 2 3,2 1,3 1是相對應的特徵向量,由 1,2,3線性無關,得 1 2 3,2 1,3 1也線性無...