什麼是「用判別式法求函式值域」啊

時間 2021-08-31 05:52:41

1樓:暖萱紫菱

1. 對於形如

這種分子、分母的最高次為2次的分式函式,可以將函式化為乙個關於x的一元二次方程,將y看做乙個常數。與此同時,分母≠0,可以得到x的取值範圍。既然x有取值,表示 轉化後的一元二次方程有解。

故此時可以利用求根公式中的判別式≥0,來確定y的範圍。這種方法,就叫做 「用判別式求函式值域」。

2. 但是此種方法也存在限制,比如 當函式為分子、分母的最高次為2次的分式函式,但分子分母有公因式可約分時,此時不能用用判別式法做,應先約分,再用反函式法求其值域。

2樓:及羽揚俊

對於二次函式y=ax2+bx+c來說定義域是x的取值範圍,在此x的取值範圍是全體實數所以x屬於r,而如果二次項為0那麼這個函式就變成了一次函式。永不著判別式了

3樓:匿名使用者

例如:f(x)=(x+1)/x^2

y*x^2=x+1

y*x^2-x-1=0

當y=0時,x=-1,說明y=0是值域中的一部分當y不等於0時

利用1^2-4y*(-1)>=0得y的範圍最後再並上0即可

最後可得y的範圍y>=-1/4

寫成集合形式就可以了

4樓:

該法不常用。轉化為關於y的函式,研究方程判別式,使其有意義。

判別式法求函式值域怎麼求

5樓:關鍵他是我孫子

判別式法求函式值域方法:求判別式b^2-4ac,從而判斷出值域中函式的根的個數。如果b^2-4ac<0無根,b^2-4ac=0有兩個相等根即乙個根,b^2-4ac>0有兩個不相等根。

具體解題過程:

把x作為未知量,y看作常量,將原式化成關於x的一元二次方程形式y*,令這個方程有實數解,然後對二次項係數是否為零加以討論:

(1)當二次項係數為0時,將對應的y值代入方程y*中進行檢驗以判斷y的這個取值是否符合x有實數解的要求。

(2)當二次項係數不為0時,∵x∈r,∴δ≥0

此時直接用判別式法是否有可能產生增根,關鍵在於對這個方程去分母這一步是不是同解變形。

6樓:匿名使用者

一、判別式法求值域的理論依據

求函式的值域

象這種分子、分母的最高次為2次的分式函式可以考慮用判別式法求值域。

解:由得:

(y-1)x2+(1-y)x+y=0 ①

上式中顯然y≠1,故①式是關於x的一元二次方程

為什麼可以這樣做?即為什麼△≥0,解得y的範圍就是原函式的值域?

我們可以設計以下問題讓學生回答:

當x=1時,y=? (0) 反過來當y=0時,x=?(1)

當x=2時,y=? () 當y=時,x=?(2)

以上y的取值,對應x的值都可以取到,為什麼?

(因為將y=0和y=代入方程①,方程的△≥0)

當y=-1時,x=?

當y=2時,x=?

以上兩個y的值x都求不到,為什麼求不到?

(因為將y的值代入方程①式中△<0,所以無解)

當y在什麼範圍內,可以求出對應的x值?

函式的值域怎樣求?

若將以上問題弄清楚了,也就理解了判別式求值域的理論依據。

二、判別式法求值域的適用範圍

前面已經談到分子、分母的最高次為2次的分式函式可以考慮用判別式法求值域。是不是所有這種類函式都可以用判別式法求值域?

求的值域

從表面上看,此題可以用判別式法求值域。

由原函式得:(y-3)x2+2x+(1-y)=0

=4-4(y-3)(1-y)≥0

即(y-2)2≥0 ∴y∈r

但事實上,當y=3時,可解得x=1, 而x=1時,原函式沒意義。問題出在**呢?

我們仔細觀察一下就會發現,此函式的分子分母均含有因式(x-1),因此原函式可以化簡為,用反函式法可求得,又x≠1代入可得y≠2,故可求得原函式的值域為。

因此,當函式為分子、分母的最高次為2次的分式函式,但分子分母有公因式可約分時,此時不能用用判別式法做,應先約分,再用反函式法求其值域。特別值得注意的是約分後的函式的定義域,如上例中化簡後的函式x≠1,故y≠2。

求函式的值域

此函式為分子、分母的最高次為2次的分式函式,且分子分母無公因式,可不可以用判別式法來求值域呢?

由得:3yx2+(2y-1)x+y+5=0

1)當3y=0,即y=0時,可解得x=5,故y可以取到0

2)當3y≠0時,令△=(2y-1)2-4×3y (y+5)≥0

解得:由1)、2)可得原函式的值域為

上面求得的值域對不對呢?顯然y=在所求得的值域範圍內,但當y=時,可求得x=2,故了限定了自變數x的取值範圍的函式不能用判別式法求值域。

此題可用導數法求得原函式在區間[3,5]內單調遞增,故函式的定義域為。

綜上所述,函式必須同時滿足以下幾個條件才可以用判別式法求其值域:

分子分母的最高次為二次的分式函式;

分子分母無公約數;

未限定自變數的取值範圍。

最後需要說明的是用判別式求值域時,第一步將函式變為整式的形式,第二步一定要看變形後的二次項(x2項)係數是否含有y,若含有y,則要分二次項係數為零和不為零兩種情況進行討論。

利用判別式求值域時應注意的問題

用判別式法求函式的值域是求值域的一種重要的方法,但在用判別式法求值域時經常出錯,因此在用判別式求值域時應注意以下幾個問題:

一、要注意判別式存在的前提條件,同時對區間端點是否符合要求要進行檢驗

錯因:把 代入方程(*)顯然無解,因此 不在函式的值域內。事實上, 時,方程(*)的二次項係數為0,顯然不能用「 」來判定其根的存在情況

二、注意函式式變形中自變數的取值範圍的變化

解中函式式化為方程時產生了增根( 與 雖不在定義域內,但是方程的根),因此最後應該去掉 與 時方程中相應的 值。所以正確答案為 ,且 。

三、注意變形後函式值域的變化

四、注意變數代換中新、舊變數取值範圍的一致性

綜上所述,在用判別式法求函式得值域時,由於變形過程中易出現不可逆得步驟,從而改變了函式得定義域或值域。因此,用判別式求函式值域時,變形過程必須等價,必須考慮原函式得定義域,判別式存在的前提,並注意檢驗區間端點是否符合要求。

7樓:徐少

舉例y=(2x+1)/(x²+1)

定義域:r

y(x²+1)=x+1

yx²-x+y-1=0......①

∵ y=(x+1)/(x²+1)的定義域是r∴ 關於x的方程①恒有實數解

∴ δ=(-1)²-4y(y-1)≥0

4y²-4y-1≤0

(4-√32)/8≤y≤(4+√32)/8(1-√2)/2≤y≤(1+√2)/2

∴y=(2x+1)/(x²+1)的值域是

[(1-√2)/2,(1+√2)/2]

8樓:一蓑煙雨

高中數學必修1—判別式法求函式值域

高一數學判別式法求函式值域怎麼用

9樓:

由於對任意乙個實數y,它在函式f(x)的值域內的充要條件是關於x的方程y=f(x)有實數解,因此「求f(x)的值域。」這一問題可轉化為「已知關於x的方程 y=f(x)有實數解,求y的取值範圍。」因此先將y表示成關於x的二次函式,在求解對應一元二次方程有實數根時的y的取值範圍,就是原函式y=f(x)的值域。

你所說的「x屬於r或有一點不可取」是指要先確定原函式的定義域,再結合x的取值範圍求出值域。

(3)原函式定義域為r。y=(2x^2+4x-7)/(x^2+2x+3)=[2(x^2+2x+3)-1]/(x^2+2x+3)=2-1/(x^2+2x+3)=2-1/[(x+1)^2+2].(x+1)^2>=0,(x+1)^2+2>=2,2-1/[(x+1)^2+2]>=2-1/2=3/2

值域為[3/2,+∞)

(4)原函式定義域為r,y=(x+1)/(x^2+x+1),分母乘過去得yx^2+xy+y=x+1,yx^2+(y-1)x+y-1=0,判別式△=(y-1)^2-4*y*(y-)=(y-1)()(4)原函式定義域為r,y=(x+1)/(x^2+x+1),分母乘過去得yx^2+xy+y=x+1,yx^2+(y-1)x+y-1=0,判別式△=(y-1)^2-4*y*(y-)=(y-1)(3y+1)<=0

解得定義域為[-1/3,1]

10樓:匿名使用者

一、判別式法求值域的理論依據

求函式的值域

象這種分子、分母的最高次為2次的分式函式可以考慮用判別式法求值域。

解:由得:

(y-1)x2+(1-y)x+y=0 ①

上式中顯然y≠1,故①式是關於x的一元二次方程

為什麼可以這樣做?即為什麼△≥0,解得y的範圍就是原函式的值域?

我們可以設計以下問題讓學生回答:

當x=1時,y=? (0) 反過來當y=0時,x=?(1)

當x=2時,y=? () 當y=時,x=?(2)

以上y的取值,對應x的值都可以取到,為什麼?

(因為將y=0和y=代入方程①,方程的△≥0)

當y=-1時,x=?

當y=2時,x=?

以上兩個y的值x都求不到,為什麼求不到?

(因為將y的值代入方程①式中△<0,所以無解)

當y在什麼範圍內,可以求出對應的x值?

函式的值域怎樣求?

若將以上問題弄清楚了,也就理解了判別式求值域的理論依據。

二、判別式法求值域的適用範圍

前面已經談到分子、分母的最高次為2次的分式函式可以考慮用判別式法求值域。是不是所有這種類函式都可以用判別式法求值域?

求的值域

從表面上看,此題可以用判別式法求值域。

由原函式得:(y-3)x2+2x+(1-y)=0

=4-4(y-3)(1-y)≥0

即(y-2)2≥0 ∴y∈r

但事實上,當y=3時,可解得x=1, 而x=1時,原函式沒意義。問題出在**呢?

我們仔細觀察一下就會發現,此函式的分子分母均含有因式(x-1),因此原函式可以化簡為,用反函式法可求得,又x≠1代入可得y≠2,故可求得原函式的值域為。

因此,當函式為分子、分母的最高次為2次的分式函式,但分子分母有公因式可約分時,此時不能用用判別式法做,應先約分,再用反函式法求其值域。特別值得注意的是約分後的函式的定義域,如上例中化簡後的函式x≠1,故y≠2。

求函式的值域

此函式為分子、分母的最高次為2次的分式函式,且分子分母無公因式,可不可以用判別式法來求值域呢?

由得:3yx2+(2y-1)x+y+5=0

1)當3y=0,即y=0時,可解得x=5,故y可以取到0

2)當3y≠0時,令△=(2y-1)2-4×3y (y+5)≥0

解得:由1)、2)可得原函式的值域為

上面求得的值域對不對呢?顯然y=在所求得的值域範圍內,但當y=時,可求得x=2,故了限定了自變數x的取值範圍的函式不能用判別式法求值域。

此題可用導數法求得原函式在區間[3,5]內單調遞增,故函式的定義域為。

綜上所述,函式必須同時滿足以下幾個條件才可以用判別式法求其值域:

分子分母的最高次為二次的分式函式;

分子分母無公約數;

未限定自變數的取值範圍。

最後需要說明的是用判別式求值域時,第一步將函式變為整式的形式,第二步一定要看變形後的二次項(x2項)係數是否含有y,若含有y,則要分二次項係數為零和不為零兩種情況進行討論。

利用判別式求值域時應注意的問題

用判別式法求函式的值域是求值域的一種重要的方法,但在用判別式法求值域時經常出錯,因此在用判別式求值域時應注意以下幾個問題:

一、要注意判別式存在的前提條件,同時對區間端點是否符合要求要進行檢驗

錯因:把 代入方程(*)顯然無解,因此 不在函式的值域內。事實上, 時,方程(*)的二次項係數為0,顯然不能用「 」來判定其根的存在情況

二、注意函式式變形中自變數的取值範圍的變化

解中函式式化為方程時產生了增根( 與 雖不在定義域內,但是方程的根),因此最後應該去掉 與 時方程中相應的 值。所以正確答案為 ,且 。

三、注意變形後函式值域的變化

四、注意變數代換中新、舊變數取值範圍的一致性

綜上所述,在用判別式法求函式得值域時,由於變形過程中易出現不可逆得步驟,從而改變了函式得定義域或值域。因此,用判別式求函式值域時,變形過程必須等價,必須考慮原函式得定義域,判別式存在的前提,並注意檢驗區間端點是否符合要求。

如何用判別式法求函式值域,判別式法求函式值域的原理

對於分式函式 y f x ax 2 bx c dx 2 ex f 由於對任意乙個實數y,它在函式f x 的值域內的充要條件是關於x的方程 y ax 2 bx c dx 2 ex f 有實數解,因此 求f x 的值域。這一問題可轉化為 已知關於x的方程 y ax 2 bx c dx 2 ex f 有實...

高一函式值域的求法中的判別式法的過程是怎樣的

對於分式函式y f x ax 2 bx c x 2 mx n 由於對任意一個實數y,它在函式f x 的值域內的充要條件是關於x的方程y ax 2 bx c x 2 mx n 有實數解,把 求f x 的值域 這問題可轉化為 已知x的方程y ax 2 bx c x 2 mx n 有實數解,求y的取值範圍...

請教 用「判別式法」求函式的最值是怎麼回事,並舉例說明一下

黃邦活 用 法求函式最值的前提條件是函式式能轉化為含x的一元二次方程ax 2 bx c 0 的形式,根據函式的定義,自變數有解即需 0,這就是可以用 等於0求最值,但要注意這是函式有最值的必要條件,因此要檢驗是否充分,即函式能否取得最值.最好的辦法是先求定義域,在定義域內有解,先用判別式不小於0,再...