怎樣學好因式分解

時間 2021-12-23 19:04:36

1樓:

因式分解是代數式的一種重要恒等變形。它是學習分式的基礎,又在恒等變形、代數式的運算、解方程、函式中有廣泛的應用。初中因式分解主要有以下幾種方法:

一.提公因式法:即ma+mb+mc=m(a+b+c),這種方法的關鍵是找準公因式,如15m³n²+5m²n-20m²n³的公因式是5m²n。

再有分組分解,把部分看成整體是這種方法的難點,如(x+y)²-x-y應把後兩項看成乙個整體,放到()裡,()前面寫-號,再提公因式,原式=(x+y)²-(x+y)=(x+y)(x+y-1).各種分組要多加練習才能掌握好。

二.公式法:平方差公式a²-b²=(a+b)(a-b)這個公式的要點分析:

必須是有兩項的完全平方或兩個整體的完全平方,且這兩項或兩部分符號相反,才能用這個公式.完全平方公式a²±2ab+b²=(a±b)²這個公式要點是必須有三項或三個整體部分,期中有兩項或兩部分是完全平方,另一項或另一部分是完全平方部分的底數的乘積的2倍。如下面題型:

1.下列各式中,能用平方差公式分解因式的是:(b)a.

x²+y²b.1-x²c.-x²-y²d.

x²-xy2.x²-(y+1)²分解因式,結果正確的是(a)a.(x+y+1)(x-y-1)b.

(x+y-1)(x-y-1)c.(x+y-1)(x+y+1)d.(x-y+1)(x+y+1)3.

x²+16x+k是完全平方式,則k等於(a)a.64b.±64c.

24d.±244.9a²+ka+16是乙個完全平方式,則k的值是(±24)

三.十字相乘法 :由(x+a)(x+b)=x²+(a+b)x+ab得逆運算,即x²+(a+b)x+ab=(x+a)(x+b),即二次三項式x²+px+q,如果常數項q等於a,b的積,且a+b正好等於一次項係數p,那麼x²+px+q=(x+a)(x+b)例題:

分解因式x²-5x+6,因為6=(-2)×(-3),且(-2)+(-3)=-5,所以原式=(x-2)(x-3).鞏固練習:分解因式:

a²+7a+10

要掌握好因式分解,還要多做練習,多鞏固。

2樓:

學好分解因式需要兩點,一是需要好的方法,而是要多做題目,而分解因式好的方法不乏以下六大點和五小點,如果掌握熟練,會對你的因式分解有很大幫助。而多做練習也十分不開的,這會讓你能更好的應用這些方法。下面是六點方法以及經典的練習:

一:方法【六大點】

⑴提公因式法

①公因式:各項都含有的公共的因式叫做這個多項式各項的~.

②提公因式法:一般地,如果多項式的各項有公因式,可以把這個公因式提到括號外面,將多項式寫成因式乘積的形式,這種分解因式的方法叫做提公因式法.

am+bm+cm=m(a+b+c)

③具體方法:當各項係數都是整數時,公因式的係數應取各項係數的最大公約數;字母取各項的相同的字母,而且各字母的指數取次數最低的. 如果多項式的第一項是負的,一般要提出「-」號,使括號內的第一項的係數是正的.

⑵運用公式法

①平方差公式:. a^2-b^2=(a+b)(a-b)

②完全平方公式: a^2±2ab+b^2=(a±b)^2

※能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(或式)的平方和的形式,另一項是這兩個數(或式)的積的2倍.

③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).

立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).

④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3

⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]

a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m為奇數)

⑶分組分解法

分組分解法:把乙個多項式分組後,再進行分解因式的方法.

分組分解法必須有明確目的,即分組後,可以直接提公因式或運用公式.

⑷拆項、補項法

拆項、補項法:把多項式的某一項拆開或填補上互為相反數的兩項(或幾項),使原式適合於提公因式法、運用公式法或分組分解法進行分解;要注意,必須在與原多項式相等的原則進行變形.

⑸十字相乘法

①x^2+(p q)x+pq型的式子的因式分解

這類二次三項式的特點是:二次項的係數是1;常數項是兩個數的積;一次項係數是常數項的兩個因數的和.因此,可以直接將某些二次項的係數是1的二次三項式因式分解:

x^2+(p q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能夠分解成k=ac,n=bd,且有ad+bc=m 時,那麼

kx^2+mx+n=(ax b)(cx d)

a \-----/b ac=k bd=n

c /-----\d ad+bc=m

※ 多項式因式分解的一般步驟:

①如果多項式的各項有公因式,那麼先提公因式;

②如果各項沒有公因式,那麼可嘗試運用公式、十字相乘法來分解;

③如果用上述方法不能分解,那麼可以嘗試用分組、拆項、補項法來分解;

④分解因式,必須進行到每乙個多項式因式都不能再分解為止。

(6)應用因式定理:如果f(a)=0,則f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,則可確定(x+2)是x^2+5x+6的乙個因式。

【五小點】

(7)配方法:對於那些不能利用公式法的多項式,有的可以利用將其配成乙個完全平方式,然後再利用平方差公式,就能將其因式分解。

(8)換元法:有時在分解因式時,可以選擇多項式中的相同的部分換成另乙個未知數,然後進行因式分解,最後再轉換回來。

(9)利用特殊值法:將2或10代入x,求出數p,將數p分解質因數,將質因數適當的組合,並將組合後的每乙個因數寫成2或10的和與差的形式,將2或10還原成x,即得因式分解式。

(10)待定係數法:首先判斷出分解因式的形式,然後設出相應整式的字母係數,求出字母係數,從而把多項式因式分解。

(11)主元法:先選定乙個字母為主元,然後把各項按這個字母次數從高到低排列,再進行因式分解。

二:練習:

例1 把-a2-b2+2ab+4分解因式。

解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2)

這裡的「負」,指「負號」。如果多項式的第一項是負的,一般要提出負號,使括號內第一項係數是正的。防止學生出現諸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的錯誤?

如例2 △abc的三邊a、b、c有如下關係式:-c2+a2+2ab-2bc=0,求證這個三角形是等腰三角形。

分析:此題實質上是對關係式的等號左邊的多項式進行因式分解。

證明:∵-c2+a2+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0,∴(a-c)(a+2b+c)=0.

又∵a、b、c是△abc的三條邊,∴a+2b+c>0,∴a-c=0,

即a=c,△abc為等腰三角形。

例3把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1)

這裡的「公」指「公因式」。如果多項式的各項含有公因式,那麼先提取這個公因式,再進一步分解因式;這裡的「1」,是指多項式的某個整項是公因式時,先提出這個公因式後,括號內切勿漏掉1。防止學生出現諸如6p(x-1)3-8p2(x-1)2+2p(1-x)2=2p(x-1)2〔3(x-1)-4p〕=2p(x-1)2(3x-4p-3)的錯誤。

例4 在實數範圍內把x4-5x2-6分解因式。

解:x4-5x2-6=(x2+1)(x2-6)=(x2+1)(x+6)(x-6)

這裡的「底」,指分解因式,必須進行到每乙個多項式因式都不能再分解為止。即分解到底,不能半途而廢的意思。其中包含提公因式要一次性提「乾淨」,不留「尾巴」,並使每乙個括號內的多項式都不能再分解。

防止學生出現諸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的錯誤。

由此看來,因式分解中的四個注意貫穿於因式分解的四種基本方法之中,與因式分解的四個步驟或說一般思考順序的四句話:「先看有無公因式,再看能否套公式,十字相乘試一試,分組分解要合適」是一脈相承的。

這只是理論上的方法,至於實際上的,還得靠你自己多努力了。希望能對你有幫助。

3樓:金南皇妮子

掌握因式分解的幾個大類,主要包括提取公因式法,利用公式法(主要包括用平方差公式和完全平方公式)以及十字相乘法。多做些題自然就掌握了

4樓:匿名使用者

答案很簡單,就是多做題多練習,只有在自己的實踐中才能真正地知道怎麼去學,自己總結出來的才是自己的,別人的方法只能是個參照。

5樓:老虎

打好基礎 多練習 要知其然 知其所以然才能學紮實

6樓:魔鬼的頭

不會要請教老師,老師會教你方法的

因式分解公式,因式分解的公式

1.提取公因式 這個是最基本的.就是有公因式就提出來,這個大家都會,就不多說了 2.完全平方 a 2 2ab b 2 a b 2 a 2 2ab b 2 a b 2 看到式字內有兩個數平方就要注意下了,找找有沒有兩數積的兩倍,有的話就按上面的公式進行.3.平方差公式 a 2 b 2 a b a b ...

數學因式分解,數學因式分解

x 1為三次多項 0的重根,先不管重根,x 1代入解得。1 1 a b 0 b a 2x 3 x 2 b 2 x b x 1 x 2 2x b 因此x 1是x 2 2x b 0的根。代入解得b 3 a 5x 2 2x 3 x 1 x 3 另乙個因式為x 3 因為 x 1 2 是 x 3 x 2 ax...

因式分解與分解因式的區別

溫柔的張秀霞 因式分解與分解因式沒有區別。基本概念 定義1 把一個多項式在一個範圍化為幾個整式的積的形式,這種式子變形叫做這個多項式的因式分解,也叫作把這個多項式分解因式。2 因式分解是中學數學中最重要的恆等變形之一,它被廣泛地應用於初等數學之中,在數學求根作圖 解一元二次方程方面也有很廣泛的應用,...