1樓:繩憶曼令娟
因為圓的一般方程的半徑為1/2根號下(d²+e²-4f),正因為(d²+e²-4f)在根號裡面,所以它必須大於或等於0,而且聯絡實際,圓的半徑不可能為0,所以綜合兩個因素,決定了d²+e²-4f>0
2樓:儲鳴澹臺弘深
x²+y²+dx+ey+f=0
即(x+d/2)²+(y+e/2)²-(d²+e²)/4+f=04[(x+d/2)²+(y+e/2)²]=d²+e²-4f因為圓的半徑大於0,所以d、e不可能同時為0所以d²+e²-4f>0
3樓:雷用利飛光
圓的一般方程x²+y²+dx+ey+f=0,則圓的標準方程為:
(x-d/2)^2+(y-e/2)^2=d^2/4+e^2/4-f。
則根據半徑r>0可知:d^2/4+e^2/4-f>0。
化簡可得:d^2+e^2-4f>0。
4樓:曹琛僧綺麗
當d2+e2-4f>0時,方程(*)表示圓心(-
,-),半徑r=
的圓老師就這樣教的
5樓:梁聽度拔
化成圓心半徑式後,要求r^2>0;得到的
6樓:龐歆玉晗蕾
(x+d/2)^2+(y+e/2)^2=d^2/4+e^2/4-f
則d^2/4+e^2/4-f>0
即d^2+e^2-4f>0
7樓:定榮雀霞月
對圓的方程配平方,得到(x+d/2)平方+(y+e/2)平方-d方/4-e方/4+f=0,根據平方項均為正,所有必須要求d方+e方-4f>0
圓的一般式x²+y²+dx+ey+f=0是怎麼推倒出來的,d.e.f是什麼
8樓:匿名使用者
實際是按照圓心在點(a, b),半徑為r的圓的方程為(x-a)²+(y-b)²=r²,把這個方程,合併同類項就得到一般式了。
d和e的相反數的一半就是圓心座標。
d的一半的平方加e的一半的平方再加f就是圓的半徑的平方。
因此,這裡對f是有一定的條件的,就是d²+e²-4f≥0。
9樓:松逸閣
一樓的對。在這個一般式中只有x和y是未知數,其他都是已知的,a ,b是圓的中心點,在座標系中是人為給定已知的,r是圓的半徑,也是人為給定的已知的條件,所以用def所代表的都是已知的數值。
大神進, 圓的一般方程:x2+y2+dx+ey+f=0 裡的xy,d、e、f分別是圓的什麼
10樓:匿名使用者
x²+y²+dx+ey+f=(x+d/2)²+(y+e/2)²-d²/4-e²/4+f=0
即有(x+d/2)²+(y+e/2)²=d²/4+e²/4-f;
當d²/4+e²/4-f>0時此曲線是園;當d²/4+e²/4-f=0此曲線是乙個點;
當d²/4+e²/4-f<0時是虛園。
若是園,則圓心為(-d/2,-e/2);半徑r=√(d²/4+e²/4-f)=(1/2)√(d²+e²-4f).
d、e、f分別是圓的什麼?你看呢?
11樓:匿名使用者
(x,y)是圓上的點的座標。
從幾何意義上來看,圓心座標是(-d/2, -e/2),半徑的平方是(d^2+e^2)/4-f
圓的一般一般方程要滿足什麼條件
12樓:伯熊熊辰
ax +by =c。其中a不等於b,如果a=b,那麼這就是個圓的方程了。如果c=0,那麼這就是個標準的橢圓的方程。
13樓:匿名使用者
圓的一般方程是:x²+y²+dx+ey+f=0
其中,d²+e²-4f>0就是表示圓的條件。
14樓:匿名使用者
乙個方程要是圓的一般方程不僅半徑大於零,而且要它二次項係數為1,沒有xy項
15樓:深遠的無
(x-a)2+(y-b)2=r 2。
還有一般式、就要知道切線的方程
x²+y²+dx+ey+f=0。
就是說對於x²+y²+dx+ey+f=0
它的係數要滿足乙個條件才可以證明這個方程表示的是圓當d²+e²-4f=0的時候、解是乙個點
所以d²+e²-4f≠0的時候是乙個圓
16樓:匿名使用者
圓的一般方程:x²+y²+dx+ey+f=0
其中:d²+e²-4f>0
圓的一般方程怎麼轉化標準方程 20
17樓:山野田歩美
圓的一般方程是:x²+y²+dx+ey+f=0
其中,d²+e²-4f>0就是表示圓的條件。
18樓:弦音出唯美
先算出圓心和半徑就算出來了
19樓:匿名使用者
配方法(x+d/2)^2+(y+e/2)^2=d^2/4+e^2/4-f
圓的方程的半徑公式
20樓:金牛座的性格
圓的一般方程是x²+y²+dx+ey+f=0(d²+e²-4f>0)其中圓心座標是:(-d/2,-e/2)。
半徑:1/2√(d²+e²-4f)。
圓的一般方程,是數學領域的知識。圓的一般方程為 x²+y²+dx+ey+f=0 (d²+e²-4f>0),或可以表示為(x+d/2)²+(y+e/2)²=(d²+e²-4f)/4。
擴充套件資料:
圓的一般方程
圓的標準方程是乙個關於x和y的二次方程,將它並按x、y的降冪排列,得:
設d=-2a,e=-2b,f=a2+b2-r2;則方程變成:
任意乙個圓的方程都可寫成上述形式。把它和下述的一般形式的二元二次方程比較,可以看出它有這樣的特點:(1)x2項和y2項的係數相等且不為0(在這裡為1);(2)沒有xy的乘積項。
21樓:匿名使用者
圓的半徑公式:
c=2πr,得到r=c/2π
s=πr^2,r=根號下s/π
v=(4/3)πr^3, 得到r=三次根號下(3v)/ (4 π)擴充套件資料圓周率π是指平面上周長與平面之比(常取3.14),歷史上曾用過圓周率的多種近似值,隨著科學的發展和社會的進步,π值的計算越來越精確,最新記錄是小數點後14221億位。大圓直徑為小圓直徑的三倍,當大圓轉動一周後小圓剛好轉三圈,證明了圓的周長與半徑成正比關係。
22樓:
一 標準方程
(x-a)^2+(y-b)^2=r^2
在平面直角座標系中,設有圓o,圓心o(a,b) 點p(x,y)是圓上任意一點。
因為圓是所有到圓心的距離等於半徑的點的集合。
所以√[(x-a)^2+(y-b)^2]=r兩邊平方,得到
即(x-a)^2+(y-b)^2=r^2
圓的方程的半徑公式r=√[(x-a)^2+(y-b)^2]二 一般方程
x^2+y^2+dx+ey+f=0
此方程可用於解決兩圓的位置關係
配方化為標準方程:(x+d/2)^2.+(y+e/2)^2=(d^2+e^2-4f)/4
其圓心座標:(-d/2,-e/2)
半徑為r=√[(d^2+e^2-4f)]/2
23樓:嬌羞的天使
最好還是這個公式:
半徑: c=2πr
直徑: c=πd 這兩是周長。
半徑: s圓=πr² 這是面積。
這個我學過的!!!
24樓:季市剛剛
圓的半徑可以有三個公式來求:
c=2πr.得到r=c/2π
s=πr^2, r=根號下s/π
v=(4/3)πr^3, 得到r=三次根號下(3v)/(4π)
25樓:小吞蛋蛋
(x-a)平方+(y-b)平方=r平方
(a,b)為圓心 r 為半徑
26樓:匿名使用者
c/2/3.142=x
圓的一般方程裡的 d²+e²-4f 表示什麼,為什麼? 怎麼理解一般方程和標準方程的關係?
27樓:匿名使用者
標準方程抄:
(x-a)²+(y-b)²=r²
把括號並把所有襲項移到左邊,得
x²+y²-2ax-2by+a²+b²-r²=0令-2a=d,-2b=e,a²+b²-r²=f,則標準方程化為:
x²+y²+dx+ey+f=0.這就是圓的一般方程.
但並不是所有形如x²+y²+dx+ey+f=0的方程都能表示圓.根據上面的推導過程我們可以得到r²=a²+b²-f,把a=-d/2,b=-e/2代入,得r²=(d²+e²-4f)/4.
所以,如果乙個方程x²+y²+dx+ey+f=0要表示圓,必須滿足d²+e²-4f>0.
如何對圓的一般方程配方,圓的一般方程和圓的標準方程怎麼轉換?(手寫過程,詳細) 5
概念形成與深化 請同學們寫出圓的標準方程 x a 2 y b 2 r2,圓心 a,b 半徑r.把圓的標準方程,並整理 x2 y2 2ax 2by a2 b2 r2 0.取d 2a,e 2b,f a2 b2 r2得x2 y2 dx ey f 0 這個方程是圓的方程.反過來給出一個形如x2 y2 dx ...
圓的一般方程怎麼配方成標準方程
圓的一般方程 x y dx ey f 0推導過程 由圓的標準方程 的左邊,整理得 在這個方程中,如果令 則這個方程可以表示成 推論為此,將一般方程配方,得 為此與標準方程比較,可斷定 1 當d2 e2 4f 0時,一般方程表示一個以為圓心,為半徑的圓。2 當d2 e2 4f 0時,一般方程僅表示一個...
圓的一般方程各字母含義,圓有兩種方程,分別是?每個字母各代表什麼
至尊 對於圓的方程 x 2 y 2 1 即單位圓,半徑為1,圓心o 0,0 x 2 y 2 r 2,圓心o 0,0 半徑r x a 2 y b 2 r 2,圓心o a,b 半徑r而對於一般方程 x 2 y 2 dx ey f 0 對於一般方程,要理解各字母的意思很難,需要化成標準方程,即圓的方程,通...