已知x0,y0,且x 2 y 2 2 1,求x根號 1 y 2 的最大值

時間 2021-09-16 03:55:06

1樓:匿名使用者

設x=cosα,y=√2sinα,0<α<π/2x√(1+y^2)=cosα√[1+2(sinα)^2]=√[(cosα)^2+2(sinαcosα)^2]=√=√

=√(1/2)√

=√(1/2)√

=√(1/2)√

0<α<π/2

0<2α<π

-1<cos(2α)<1

-3/2<cos(2α)-1/2<1/2

0≤[cos(2α)-1/2]^2<1/4或0≤[cos(2α)-1/2]^2<9/4

0≤[cos(2α)-1/2]^2<9/4-9/4<-[cos(2α)-1/2]^2≤00<9/4-[cos(2α)-1/2]^2≤9/40<√≤3/2

0<x√(1+y^2)≤(3/2)√(1/2)最大值(3/2)√(1/2)

2樓:匿名使用者

x√(1+y^2)<=√2[x√(1/2+y^2/2)]<=√2/2*(x^2+1/2+y^2/2)=√2/2*(1+1/2)=3√2/4

中間用到2ab<=a^2+b^2

已知x>0,y>0,且x^2+(y^2)/2=1,則x√(1+y^2)的最大值是

3樓:玖

x√(1+y^2)=√(x^2+x^2 y^2) ① 因為x^2=1-(y^2)/2,帶入①,得√【-0.5(y^4-y^2-2)】,把裡面的y^2看成乙個整體a,所以y^4-y^2-2=a^2-a-2,這個二次函式的最小值為-9/4,所以√【-0.5(y^4-y^2-2)】=√(9/8)=3√2/4 。

若x>0,y>0,且x^2+y^2=1,則x/(1-x^2)+y/(1-y^2)的最小值為

4樓:匿名使用者

原式》2(1/xy)^1/2,1/xy》2的,兩個不等式等號都在x=y時取到,所以最小值2倍根號2

5樓:

x/(1-x^2)+y/(1-y^2)=x/y^2+y/x^2≥2(1/xy)^1/2 ,又1/xy≥2,所以原式≥2根號2

已知x>0,y.>0,且x+y=1,求下列最小值,(1)x^2+y^2 (2)1/x^2+1/y^2 (3)2/x+3/y (4) (x+1/x)*(y+1/y) (

6樓:宇文仙

解:已知x>0,y.>0,且x+y=1

(1)x^2+y^2≥2xy

2(x^2+y^2)≥(x+y)^2=1

x^2+y^2≥1/2

(2)1/x^2+1/y^2=(x+y)^2/x^2+(x+y)^2/y^2

=2+y^2/x^2+x^2/y^2+2y/x+2x/y

≥2+2√[(y^2/x^2)*(x^2/y^2)]+2√[(2y/x)*(2x/y)]

=2+2+2*2

=8(3)2/x+3/y=(2x+2y)/x+(3x+3y)/y=2+2y/x+3x/y+3

=5+2y/x+3x/y

≥5+2√[(2y/x)*(3x/y)]

=5+2√6

(4)(x+1/x)*(y+1/y)=xy+x/y+y/x+1/xy

= xy + 1/(xy) + (x^2+y^2)/(xy)

= xy + 1/(xy) + (x^2+2xy+y^2)/(xy) -2

= xy + 1/(xy) + (x+y)^2/(xy) -2

= xy + 2/(xy) -2

求 f(z) = z + 2/z 的最小值,其中z=xy<=1/4

由於f(z)在(0,1/4]區間是單調遞減函式(可以證明f(z)在(0,sqrt(2)]區間是單調遞減函式,而1/4

所以(x+1/x)*(y+1/y)的最小值=8+1/4-2=6+1/4=25/4

(5)(x+1/x)^2+(y+1/y)^2≥2(x+1/x)*(y+1/y)≥25/2

(6)(x+2)^2+(y+2)^2=x^2+4x+4+y^2+4y+4

=x^2+y^2+12≥1/2+12=25/2

(7)(y+2)/(x+2)=(1-x+2)/(x+2)=(3-x)/(x+2)=-1+5/(x+2)

0

所以5/3<5/(x+2)<5/2

所以2/3<(y+2)/(x+2)<3/2

所以(y+2)/(x+2)無最小值,因為它不能取到2/3

太多了,也不知道有沒有做錯的

已知x>0,y>0,x+y=1, 則x^2/(x+2)+y^2/(y+1)的最小值為

7樓:匿名使用者

因為 x y=1,(x 2) (y 1)=4

那麼x^2/(x 2) y^2/(y 1)

=[(x 2)-2]^2/(x 2) [(y 1)-1]^2/(y 1)

=[(x 2)^2-4(x 2) 4]/(x 2) [(y 1)^2-2(y 1) 1]/(y 1)

=(x 2)-4 4/(x 2) (y 1)-2 1/(y 1)

=(x y-3) 4/(x 2) 1/(y 1)

=-2 [(x 2) (y 1)]/(x 2) [(x 2) (y 1)]/[4(y 1)]

=-2 1 1/4 (y 1)/(x 2) (x 2)/[4(y 1)]

=-3/4 (y 1)/(x 2) (x 2)/[4(y 1)]

∵(y 1)/(x 2) (x 2)/[4(y 1)]≥2√(1/4)=1

當且僅當(y 1)/(x 2)=(x 2)/[4(y 1)]

即x 2=2(y 1)

x=2/3,y=1/3時取等號

∴x^2/(x 2) y^2/(y 1)≥1/4

即最小值為1/4

8樓:暖眸敏

∵x+y=1

∴(x+2)+(y+1)=4

x^2/(x+2)+y^2/(y+1)

=[(x+2)-2]^2/(x+2)+[(y+1)-1]^2/(y+1)

=[(x+2)^2-4(x+2)+4]/(x+2)+[(y+1)^2-2(y+1)+1]/(y+1)

=(x+2)-4+4/(x+2)+(y+1)-2+1/(y+1)

=4/(x+2)+1/(y+1)+(x+y-3)

=[4/(x+2)+1/(y+1)] *[(x+2)+(y+1)]/4 -2

=[4+1+(x+2)/(y+1)+4(y+1)/(x+2)]/4-2

≥5+2√4-2=7

∴x^2/(x+2)+y^2/(y+1)的最小值為7

已知x 2019,lyl 2019,且x0,y0,求x y的值

由已知 y 2012,y 0,所以y 2012,又因為x 0所以x 2014得x y 2014 2012 2。望採納,謝謝。 丨x丨 2014 丨y丨 2012 x 2014或 2014 y 2012或 2012 又 x 0 y 0 x 2014 y 2012 x y 2014 2012 2 專業解...

已知x 0,y 0,且2x 8y xy 0,求 (1)xy的

顏代 xy的最小值為64,x y的最小值為18。解 1 因為x 0,y 0,且2x 8y xy 0,那麼xy 2x 8y 2 2x 8y 即xy 8 xy 可解得 xy 8,那麼xy 64 即xy的最小時為64。2 因為2x 8y xy 0,那麼xy 2x 8y,則1 2 y 8 x。所以 x y ...

1 已知x0,y0,且x 3y 2,則1 y的最小值是

舒展翅膀翱翔 1.1 x 1 y 1 x 1 y x 3y 3y x x y 4 4 2備的根3 2.x y x y 1 x 9 y 10 9x y y x 10 6 16 注意到1 x 9 y 1 3.當x 2時,y x 16 x 2 x 2 16 x 2 2 2 根號 x 2 16 x 2 2 ...