1樓:匿名使用者
這個問題說複雜也複雜,說簡單也簡單,看你怎麼考慮,因為我們是常人,1+1=2是科學家研究的你也沒有必要了解太深,不知道你是做什麼的,你要是搞科研的想在找個答案那你就研究,因為多少年一直都是這個答案,結果是正確的,大家都在使用。
2樓:匿名使用者
1+1為什麼等於2?這個問題看似簡單卻又奇妙無比。 在現代的精密科學中,特別在數學和數理邏輯中,廣泛地運用著公理法。
什麼叫公理法呢?從某一科學的許多原理中,分出一部分最基本的概念和命題,對這些基本概念不下定義,而這一學科的所有其它概念都必須直接或間接由它們下定義;對這些基本命題(也叫公理)也不給予論證,而這一學科中的所有其它命題卻必須直接或間接由它們中推出。這樣構成的理論體系就叫公理體系,構成這種公理體系的方法就叫公理法。
1+1=2就是數學當中的公理,在數學中是不需要證明的。又因為1+1=2是一切數學定理的基礎,所以它也是無法用數學的方法證明的。 至於「1+1為什麼等於2?
」作為乙個問題,沒要求大家必須用數學的方法證明,其實只要說明為什麼1+1=2就可以了,可以說這是定義,也可以說這是公理。不過用反證法還是可以證明的:假設1+1不等於2,則數學就是一鍋粥,凡是用到數學的地方都是一鍋粥,人類社會就亂了套了,所以1+1必須等於2。
1+1=2看似簡單,卻對於人類認識世界有非同尋常的意義。 人類認識世界的過程就像乙個小孩滾雪球的過程:第一步,小孩先要用雙手捧一捧雪,這一捧雪就相當於人類對世界的感性認識。
第二步,小孩把手裡的雪捏緊,成為乙個小雪球,這個小雪球就相當於人類對感性認識進行加工,形成了概念。於是就有了1。第三步,小孩把雪球放在地上,發現雪球可以粘地上的雪,這就相當於人類的理性認識。
雪可以粘雪,相當於1+1=2。第四步,小孩把粘了雪的雪球在雪地上滾一下,發現雪球粘雪后越來越大,這就相當於人類認識世界的高階階段,可以進入良性迴圈了。相當於2+1=3。
1,2,3可以排成乙個最簡單的數列,但是可以演繹至無窮。 有了1只是有了概念,有了1+1=2才有了數學,有了2+1=3才開始了數學的無窮變化。 物理學與1+1=2的關係 人類認識世界的過程是乙個由感性到理性,有已知到未知的過程。
在數學當中已知1、2、3,則可以至於無窮,什麼是物理學當中的1、2、3呢?我認為:質量、長度、時間等基本物理概念相當於1,它們是組成物理學巨集偉大廈的磚和瓦;牛頓運動定律相當於2,它使我們有了真正的物理學和科學的物理分析方法;力學的相對性原理相當於3,使牛頓運動定律可以廣泛應用。
在經典物理學中一切都是確定無疑的,有了已知條件,我們就可以推出未知。 等到相對論的出現,一切都變了。現在相對論已經深入人心,即便是那些反對相對論的人,也基本上是認可相對論的結論的,什麼時間可變、長度可變、質量可變、時空彎曲……經典物理學認為光速對於不同的觀測者是不同的(雖然牛頓是個唯心主義者)。
相對論則認為光速對於不同的觀測者是不變的(雖然我們是唯物主義者)。我們丟掉了經典物理學所有不變的東西,換來的是相對論唯一不變的東西----光速。我覺得就象是用許多西瓜換來了乙個芝麻一樣,而且這個芝麻是很抽象的,它在真空中,速度最快,讓你根本捉不到、摸不到。
我認為牛頓三條運動定律是真理,是完美的,是不容置疑的。質疑牛頓運動定律的人開口閉口說不存在絕對靜止的物體,也不存在絕對不受外力的物體,卻忘了上學時用的物理教材,開頭都有緒論,緒論中都說:一切物質都在永恆不息地運動著,自然界一切現象就是物質運動的表現。
運動是物質的存在形式、物質的固有屬性……還提到:抽象方法是根據問題的內容和性質,抓住主要因素,撇開次要的、區域性的和偶然的因素,建立乙個與實際情況差距不大的理想模型來研究。例如,「質點」和「剛體」都是物體的理想模型。
把物體看作質點時,質量和點是主要因素,物體的形狀和大小時可以忽略不計的次要因素。把物體看作剛體——形狀和大小保持不變的物體時,物體的形狀、大小和質量分布時主要因素,物體的變形是可以忽略不計的次要因素。在物理學研究中,這種理想模型是十分必要的。
研究機械運動的規律時,就是從質點運動的規律入手,再研究剛體運動的規律而逐步深入的。有人在故意混淆視聽,有人在人云亦云,但聽的人自己要想一想,牛頓用抽象的方法來分析問題,是符合馬克思主義分析問題抓主要矛盾的指導思想的,否定了牛頓運動定律,我們拿什麼來分析相對靜止狀態、勻速直線運動、自由落體運動……? 看來相對論不但搞亂了我們的基本概念,還搞亂了我們的分析方法,這才是最危險的,長此以往,物理學將不再是物理學,而是一鍋粥,一鍋發霉的粥!
我認為物理學發展的正確思路是先要從質量、長度、時間、能量、速度等基本物理概念的理解上著手,在物理學界開展一場正名運動,然後討論牛頓運動定律是否錯了,錯的話錯在**,最後相對論的對錯也就不言自明了,也容易接受了。
哥德**猜想
2023年6月7日,德國數學家哥德**在寫給著名數學家尤拉的一封信中,提出了兩個大膽的猜想:
一、任何不小於6的偶數,都是兩個奇質數之和;
二、任何不小於9的奇數,都是三個奇質數之和。
這就是數學史上著名的「哥德**猜想」。顯然,第二個猜想是第乙個猜想的推論。因此,只需在兩個猜想中證明乙個就足夠了。
同年6月30日,尤拉在給哥德**的回信中, 明確表示他深信哥德**的這兩個猜想都是正確的定理,但是尤拉當時還無法給出證明。由於尤拉是當時歐洲最偉大的數學家,他對哥德**猜想的信心,影響到了整個歐洲乃至世界數學界。從那以後,許多數學家都躍躍欲試,甚至一生都致力於證明哥德**猜想。
可是直到19世紀末,哥德**猜想的證明也沒有任何進展。證明哥德**猜想的難度,遠遠超出了人們的想象。有的數學家把哥德**猜想比喻為「數學王冠上的明珠」。
我們從6=3+3、8=3+5、10=5+5、……、100=3+97=11+89=17+83、……這些具體的例子中,可以看出哥德**猜想都是成立的。有人甚至逐一驗證了3300萬以內的所有偶數,竟然沒有乙個不符合哥德**猜想的。20世紀,隨著計算機技術的發展,數學家們發現哥德**猜想對於更大的數依然成立。
可是自然數是無限的,誰知道會不會在某乙個足夠大的偶數上,突然出現哥德**猜想的反例呢?於是人們逐步改變了**問題的方式。
2023年,20世紀最偉大的數學家希爾伯特,在國際數學會議上把「哥德**猜想」列為23個數學難題之一。此後,20世紀的數學家們在世界範圍內「聯手」進攻「哥德**猜想」堡壘,終於取得了輝煌的成果。
20世紀的數學家們研究哥德**猜想所採用的主要方法,是篩法、圓法、密率法和三角和法等等高深的數學方法。解決這個猜想的思路,就像「縮小包圍圈」一樣,逐步逼近最後的結果。
2023年,挪威數學家布朗證明了定理「9+9」,由此劃定了進攻「哥德**猜想」的「大包圍圈」。這個「9+9」是怎麼回事呢?所謂「9+9」,翻譯成數學語言就是:
「任何乙個足夠大的偶數,都可以表示成其它兩個數之和,而這兩個數中的每個數,都是9個奇質數之和。」 從這個「9+9」開始,全世界的數學家集中力量「縮小包圍圈」,當然最後的目標就是「1+1」了。
2023年,德國數學家雷德馬赫證明了定理「7+7」。很快,「6+6」、「5+5」、「4+4」和「3+3」逐一被攻陷。2023年,我國數學家王元證明了「2+3」。
2023年,中國數學家潘承洞證明了「1+5」,同年又和王元合作證明了「1+4」。2023年,蘇聯數學家證明了「1+3」。
2023年,中國著名數學家陳景潤攻克了「1+2」,也就是:「任何乙個足夠大的偶數,都可以表示成兩個數之和,而這兩個數中的乙個就是奇質數,另乙個則是兩個奇質數的和。」這個定理被世界數學界稱為「陳氏定理」。
由於陳景潤的貢獻,人類距離哥德**猜想的最後結果「1+1」僅有一步之遙了。但為了實現這最後的一步,也許還要歷經乙個漫長的探索過程。
有許多數學家認為,要想證明「1+1」,必須通過創造新的數學方法,以往的路很可能都是走不通的
1+1=2是為什麼
3樓:中素枝壬鵑
根據一般的常識來說,
1+1=2
等於2以外的數就另有說法了.
如:一群雞加一群雞還是就等於一大群雞=1
我爸爸+我媽媽=我爸爸+我媽媽+我.=3
我也認為1+1不應該等於2
4樓:琦德慄戌
根據一般常識來說1+1=2,等於二以外的數就另有說法了,例如一大群雞加一大群雞還是等於一大群雞,我認為1+1不應該等於2
5樓:連嘉悅牢義
證明1+1=2要用到皮亞諾公理
【皮亞諾公理】
皮亞諾(peano,1858—1932)系義大利數學家,他提出五條自然數的性質,通常把這五條性質叫做自然數的皮亞諾公理。
(1)「1」是自然數;
(2)每乙個確定的自然數a,都有乙個確定的後繼數a′,a′也是自然數(乙個數的後繼數就是緊接在這個數後面的數,例如,1的後繼數是2,2的後繼數是3等等);
(3)如果b、c都是自然數a的後繼數,那麼b=c;
(4)1不是任何自然數的後繼數;
(5)任意關於自然數的命題,如果證明了它對自然數1是對的,又假定它對自然數n為真時,可以證明它對n′也真,那麼,命題對所有自然數都真。
證明:1+1的後繼數是1的後繼數的後繼數,既是32的後繼數是3
根據皮亞諾公理(4)
可得:1+1=2
6樓:匿名使用者
怎麼證明1加1等於2陳景潤證明的叫歌德巴-赫猜想。並不是證明所謂的1+1為什麼等於2。當年歌德巴-赫在給大數學家尤拉的一封信中說,他認為任何乙個大於6的偶數都可以寫成兩個質數的和,但他既無法否定這個命題,也無法證明它是正確的。
尤拉也無法證明。這「兩個質數的和」簡寫起來就是「1+1」。幾百年過去了,一直沒有人能夠證明歌德巴-赫猜想,包括陳景潤,他只是把證明向前推進了一大步,但還是沒有完全證明
21+1為什麼等於2?這個問題看似簡單卻又奇妙無比。 在現代的精密科學中,特別在數學和數理邏輯中,廣泛地運用著公理法。
什麼叫公理法呢?從某一科學的許多原理中,分出一部分最基本的概念和命題,對這些基本概念不下定義,而這一學科的所有其它概念都必須直接或間接由它們下定義;對這些基本命題(也叫公理)也不給予論證,而這一學科中的所有其它命題卻必須直接或間接由它們中推出。這樣構成的理論體系就叫公理體系,構成這種公理體系的方法就叫公理法。
1+1=2就是數學當中的公理,在數學中是不需要證明的。又因為1+1=2是一切數學定理的基礎,.........
3由此我們可以得出如下規律:
a+a=b、b+b=a、a+b=c;n+c=n( 文章閱讀網:www.sanwen.net )
a*a=a、b*b=a、a*b=b;n*c=c(注:n為任意自然數)
這八個等式客觀準確地反映了自然數中各類數的相互關係。
下面我們就用abc屬性分類對「猜想」做出證明,(我們只證明偶數中的偶a數,另兩類數的證明類同)
設有偶a數p 求證:p一定可以等於:乙個質數+另乙個質數
證明:首先作數軸由原點0到p。同時我們將數軸作90度旋轉,由橫向轉為縱向,即改為原點在下、p在上。
我們知道任意偶數都可以從它的中點二分之一p處折回原點。把0_p/2稱為左列,把p/2_p(0)稱為右列。這時,數軸的左右兩列對稱的每對數字之和都等於p:
0+p=p;1+(p-1)=p;2+(p-2)=p;、、、、、、p/2+p/2=p。這樣的左右對稱的數列我們稱之為數p的「折返」數列。
對於偶a數,左數列中的每乙個b數都對應著右列的乙個b數。(a=b+b)
1 1 2為什麼,為什麼1 1 2
1 1為什麼等於2?1 1 2,幼兒園裡的小孩都知道,就是這麼簡單的東西,卻耗費了大數學家陳景潤一生的心血,雖大有斬獲,卻臨終也不敢說1 1就是等於2。為什麼?是不是我們每個人都知道這裡面的奧妙呢?先來點兒基礎知識 偶數 能被2整除的數,如2 4 6 8 10 12 14 16 18 20等等。質數...
1 1 2為什麼?1 1 2 為什麼
1 1等於2是因為人為的在數學的領域裡規定為等於2,就像現在剛出生的小孩子,姓名都是別人起的,大家都這麼叫,以後叫這個名字就是指這個小孩子。如果以前規定1 1等於3或其他什麼的,那麼現在1 1就不等於2了,而是其他了,1 1等於什麼目前用2代替,大家都這麼認同,所以現在1 1等於2 這個問題世界上還...
為什麼1 1 2啊,為什麼1 1 2
薔祀 1 1 2 是初等數學範圍內的數值計算等式。當某個原始人第一個意識到1 1 2,進而認識到兩個數相加得到另一個確定的數時,這一刻是人類文明的偉大時刻,因為他發現了一個非常重要的性質 可加性。這個性質及其推廣正是數學的全部根基,它甚至說出數學為什麼用途廣泛的同時,告訴我們數學的侷限性。人們知道,...