如圖,已知長方體ABCD A1B1C1D1的底面ABCD為正

時間 2021-10-15 00:20:57

1樓:正牌竊格瓦拉

(1)證明:在平面ad1b中,e為ad1的中點,f為bd1的中點所以ed為△ad1b的中位線

所以ed‖ab

又因為ab在平面abcd上

所以ef‖平面abcd

(2)d1d比ad為√2比1

取aa1中點g連結dg,mg,dm

長方體abcd-a1b1c1d1中,abcd為正方形,所以ad=cdcc1⊥cd,aa1⊥ad,所以∠mcd=∠gad=90°m,g分別為cc1,aa1的中點,所以cm=ag所以△mcd≌△gad,所以md=gd

在△mdg中,md=gd 所以△mdg為等腰三角形f在mg上且為mg中點 所以df⊥mg

設d1d=db,則△dd1b中,為 d1b中點df⊥d1b∵mg,d1b相交組成平面d1mbg,df⊥d1b(已證),df⊥mg(已證)

∴df⊥平面d1mb

∴當d1d=db時 df⊥平面d1mb

db為正方形abcd的一條對角線,△abd為等腰直角三角形db:ad=√2:1

∵d1d=db∴d1d比ad為√2比1

2樓:景行

(1)∵e為線段ad1的中點,f為線段bd1的中點,∴ef∥ab,

∵ef?平面abcd,ab?平面abcd,∴ef∥面abcd.

(2)當ddad

=2時,df⊥平面d1mb.

證明如下:連線ac,bd.

設ac與bd交於點o、連線of,fm.在長方體中,∵o是bd的中點,

∴of∥dd1且of=1

2dd1、而cm∥dd1且cm=1

2dd1.

∴of∥cm且of=cm,

∴四邊形ocmf是平行四邊形.

∴fm∥oc.

∵dd1⊥平面abcd,

∴d1d⊥oc,而oc⊥bd,

∴oc⊥平面bb1d1d,

∴oc⊥df,

∴fm⊥df.

∵dd=

2ad,

∴d1d=bd.

∵f為bd1的中點,

∴df⊥bd1.

∵fm∩bd1=f,

∴df⊥平面bd1m.

2014•福州模擬)如圖長方體abcd-a1b1c1d1中,底面abcd是邊長為1的正方形,e為bb

3樓:匿名使用者

(1)分別以da,dc,dd1為x,y,z軸建立空間直角座標系,

則a(1,0,0),c(0,1,0),b(1,1,0),

設d1(0,0,h),h>0,由e為bb1延長線上的一點且滿足bb1•b1e=1,得e(1,1,h+1/h),

∴向量d1e=(1,1,1/h),d1a=(1,0,-h),d1c=(0,1,-h),

∴向量d1e*d1a=1-1=0,d1e*d1c=1-1=0,

∴d1e⊥d1a,d1e⊥d1c,

∴d1e⊥平面ad1c.

(2)設平面ace的法向量是m=(a,b,1),

向量ae=(0,1,h+1/h),ce=(1,0,h+1/h),

m*ae=b+h+1/h=0,m*ce=a+h+1/h=0,

∴a=b=-h-1/h.m=(-h-1/h,-h-1/h,1)

m*d1e=-2h-1/h,|m|=√[2(h+1/h)^2+1]=√(2h^2+2/h^2+5),|d1e|=√(2+1/h^2),

∴cos=(2h+1/h)/√[(2h^2+2/h^2+5)(2+1/h^2)]=1/√2,

平方得2(2h+1/h)^2=(2h^2+5+2/h^2)(2+1/h^2),

得2(4h^2+4+1/h^2)=4h^2+10+4/h^2+2+5/h^2+2/h^4,

整理得4h^2-4-7/h^2-2/h^4=0,

∴4h^6-4h^4-7h^2-2=0,

(h^2-2)(4h^4+4h^2+1)=0,

∴h^2=2,h=√2,

此時,b1e/bb1=1/h^2=1/2.

如圖,在長方體abcd-a1b1c1d1中,底面abcd是正方形,e是dd1的中點.(1)求證:ac⊥b1d;(2)若b1d⊥平

4樓:手機使用者

(1)證bai明:連線bd

∵底面abcd是正方形du

∴△c1dc∽△ced

∴cdc

c=ed

cd即cdcc

=12cc

cd∴2cd2=cc12∴c

ccd=2

即aaab=2

故aaab

的值為2..

如圖,在長方體ABCD A1B1C1D1中,AD AA

1 連結a1d,交ad1於f,ad aa1,矩形add1a1是正方形,a1d ad1,ab 平面add1a1,a1d 平面add1a1,ab a1d,ab ad1 a,a1d 平面abd1,d1e 平面abd1,d1e a1d。2 在底面矩形abcd中,連結de ce,ae be 1 ad bc,a...

如圖,在正方體abcd a1b1c1d1中,e f g h分

泥孤蘭 hn db,fh d1d,面fhn 面b1bdd1 點m在四邊形efgh上及其內部運動 故m fh 故答案為m fh 如圖,在正方體abcd a1b1c1d1中,e f g h分別是稜cc1 c1d1 d1d cd的 我猜你是要這道題 如果是請採納 如圖所示,在正方體abcd a1b1c1d...

用稜長是1厘公尺的小正方體拼成長方體,有幾種不同的拼

羽落諦 12 12 1 1,長 寬 高分別為12厘公尺 1厘公尺 1厘公尺 12 6 2 1,長 寬 高分別為6厘公尺 2厘公尺 1厘公尺 12 4 3 1,長 寬 高分別為4厘公尺 3厘公尺 1厘公尺12 3 2 2,長 寬 高分別為3厘公尺 2厘公尺 2厘公尺 共4種拼法。用小正方體木塊拼成乙個...