1樓:
∫[(x+1)/(x²-2x+5)]dx
=½∫[(2x-2+4)/(x²-2x+5)]dx
=½∫[(2x-2)/(x²-2x+5)]dx +2∫[1/(x²-2x+5)]dx
=½ln|x²-2x+5|+∫d(½x-½)/[1+(½x-½)²]
=½ln(x²-2x+5)+arctan(½x-½)+c
不定積分的公式
1、∫ a dx = ax + c,a和c都是常數
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + c,其中a為常數且 a ≠ -1
3、∫ 1/x dx = ln|x| + c
4、∫ a^x dx = (1/lna)a^x + c,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + c
6、∫ cosx dx = sinx + c
7、∫ sinx dx = - cosx + c
8、∫ cotx dx = ln|sinx| + c = - ln|cscx| + c
9、∫ tanx dx = - ln|cosx| + c = ln|secx| + c
10、∫ secx dx =ln|cot(x/2)| + c
= (1/2)ln|(1 + sinx)/(1 - sinx)| + c
= - ln|secx - tanx| + c
= ln|secx + tanx| + c
2樓:匿名使用者
∫(x+1)/(x^2-2x+5) dx
=(1/2) ∫(2x-2)/(x^2-2x+5) dx +2∫dx/(x^2-2x+5)
=(1/2ln|x^2-2x+5| +2∫dx/(x^2-2x+5)=(1/2ln|x^2-2x+5| +arctan[(x-1)/2]+c
consider
x^2-2x+5 =(x-1)^2 +4
letx-1 = 2tanu
dx=2(secu)^2 du
∫dx/(x^2-2x+5)
=∫2(secu)^2 du/(4(secu)^2 )=(1/2)∫ du
=(1/2)u+c1
=(1/2)arctan[(x-1)/2]+c1
求不定積分∫(1/x^2+2x+5)dx
3樓:等待楓葉
解:∫1/(x^2+2x+5)dx
=∫1/((x+1)^2+4)dx
令x+1=2tant,則x=2tant-1那麼,∫1/(x^2+2x+5)dx
=∫1/((x+1)^2+4)dx
=∫1/((2tant)^2+4)d(2tant-1)=1/4∫1/(sect)^2d(2tant)=1/2∫dt=t/2+c
又因為x+1=2tant,所以t=arctan((x+1)/2)則∫1/(x^2+2x+5)dx=t/2+c=1/2*arctan((x+1)/2)+c
4樓:寂寞的楓葉
^∫(1/(x^2+2x+5))dx的不定積分為1/2arctan((x+1)/2)+c
解:∫(1/(x^2+2x+5))dx
=∫1/[(x+1)^2+4]dx
=1/4∫1/[((x+1)/2)^2+1]dx
令(x+1)/2=t,則x=2t-1
則1/4∫1/[((x+1)/2)^2+1]dx
=1/4∫1/(t^2+1)d(2t+1)
=1/2∫1/(t^2+1)dt
=1/2arctant+c
把t=(x+1)/2代入,得
∫(1/(x^2+2x+5))dx=1/2arctan((x+1)/2)+c
擴充套件資料:
1、不定積分的公式型別
(1)含a+bx的不定積分
∫(1/(ax+b))=1/b*ln|ax+b|+c、∫(x/(ax+b))=1/b^2*(a+bx-aln|ax+b|)+c
(2)含x^2±a^2的不定積分
∫(1/(x^2+a^2))=1/a*arctan(x/a)+c、∫(1/(x^2-a^2))=1/(2a)*ln|(x-a)/(x+a)|+c
(3)含ax^2±b的不定積分
∫(1/(a*x^2+b))=1/√(a*b)*arctan(√a*x/√b)+c
2、不定積分的求解方法
(1)換元積分法
例:∫e^(2x)dx=1/2∫e^(2x)d(2x)=1/2*e^(2x)+c
(2)積分公式法
例:∫e^xdx=e^x、∫1/xdx=ln|x|+c、∫cosxdx=sinx+c
(3)分部積分法
例:∫x*e^xdx=∫xd(e^x)=x*e^x-∫e^xdx=x*e^x-e^x=(x-1)*e^x
5樓:116貝貝愛
^結果為:(1/2)arctan[(x+1)/2]+ c
解題過程如下:
原式=∫1/(x^2+2x+5)dx
=∫1/[(x+1)^2+4]dx
=∫(1/4)/[ [(x+1)/2]^2+1]dx
=∫(1/4)·2/[ [(x+1)/2]^2+1]d( (x+1)/2)
=(1/2)∫1/[ [(x+1)/2]^2+1]d( (x+1)/2)
=(1/2)arctan[(x+1)/2]+ c
求函式積分的方法:
設f(x)是函式f(x)的乙個原函式,我們把函式f(x)的所有原函式f(x)+c(c為任意常數)叫做函式f(x)的不定積分,記作,即∫f(x)dx=f(x)+c。
其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數,求已知函式不定積分的過程叫做對這個函式進行積分。
若f(x)在[a,b]上恒為正,可以將定積分理解為在oxy座標平面上,由曲線(x,f(x))、直線x=a、x=b以及x軸圍成的面積值(一種確定的實數值)。
常用積分公式:
6樓:匿名使用者
∫1/(x^2+2x+5)dx
=∫1/[(x+1)^2+4]dx
=∫(1/4)/[ [(x+1)/2]^2+1]dx=∫(1/4)·2/[ [(x+1)/2]^2+1]d( (x+1)/2)
=(1/2)∫1/[ [(x+1)/2]^2+1]d( (x+1)/2)
=(1/2)arctan[(x+1)/2]+ c上面對你搜到的答案進行了細化。
主要還是利用公式:∫[1/(x^2 +1)]dx=arctan(x) +c,本題中配方後,後面出現4,不是1,因此要通過變形,構造成滿足公式的形式。你搜到的答案倒數第二步寫得不清楚,所以難以理解。
7樓:匿名使用者
^把(x+1)做為乙個整體 即令x+1=t∫1/[(x+1)^2+2^2]d(x+1)=∫1/(t^2+2^2)dt
=1/2∫1/[t/2)^2+1]d(t/2)=(1/2)arctan(t/2)+c
代回t=x+1
=(1/2)arctan[(x+1)/2]+c
8樓:
^∫1/(x^2+2x+5)dx
=∫1/[(x+1)^2+4]dx
分子分母同除以4
=∫(1/4)/[(x/2+1/2)^2+1]dx=(1/4)*2∫1/[(x/2+1/2)^2+1]d(x/2+1/2)
=1/2∫1/[(x/2+1/2)^2+1]d(x/2+1/2)=1/2arctan[(x+1)/2]+c明白?可繼續問.
附:arctanx'=1/(1+x^2)
9樓:笑年
=∫1/[(x+1)^2+2^2]d(x+1)=∫1/2^2d(x+1) 在分母把2^2提出來=1/4∫1/d(x+1)
=1/2∫1/d(x+1)/2
=(1/2)arctan[(x+1)/2]+c ( 有公式 (arctanx)'=1/(x^2+1) )
10樓:帥哥靚姐
∫1/(x²+2x+5)dx
=∫1/[(x+1)²+4]dx
=∫1/[(x+1)²+2²]d(x+1)=∫(1/4)/([(x+1)/2]²+1)=(1/2)∫d[(x+1)/2]/([(x+1)/2]²+1)=(1/2)arctan[(x+1)/2]+c
11樓:匿名使用者
第二步就配平方,第三步換元,
∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + c
12樓:匿名使用者
微分裡面需要湊成d(x+1)/2
求不定積分∫(x/x^2+2x+5)dx解答詳細過程 謝謝
13樓:demon陌
具體回答如圖:
連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。
14樓:匿名使用者
∫1/(x^2+2x+5)dx =∫1/[(x+1)^2+4]dx =∫1/[(x+1)^2+2^2]d(x+1) =(1/2)arctan[(x+1)/2]+c
求不定積分xx 2)dx,求不定積分 1 (x 根號(1 x 2))dx?
x x 2 dx 1 4 arcsin 2x 1 1 4 2x 1 x x c 設2x 1 sin 則 2dx cos d 且 cos 2 x x x x dx 1 4 1 2x 1 d 2x 1 1 2 cos d 1 4 1 cos2 d 1 4 1 8 sin2 c 1 4 arcsin 2x...
求不定積分 1 x9 4x 2 dx需要過程
我不是他舅 1 x 9 4x 2 a 3 2x b 3 2x a 3 2x b 3 2x 9 4x 2 所以3a 2ax 3b 2bx 1 x 3a 3b 1 2b 2a 1 a 5 12,b 1 12 1 x 9 4x 2 5 12 1 3 2x 1 12 1 3 2x 所以 1 x 9 4x 2...
1 x 6 dx不定積分,1 1 x 6 dx不定積分
蹦迪小王子啊 1 1 x 6 dx不定積分求法如下 求不定積分的方法 第一類換元其實就是一種拼湊,利用f x dx df x 而前面的剩下的正好是關於f x 的函式,再把f x 看為一個整體,求出最終的結果。用換元法說,就是把f x 換為t,再換回來 分部積分,就那固定的幾種型別,無非就是三角函式乘...