1樓:我是杜鵑
函式f(x)=(x-1)(x-2)(x-3)(x-4),顯然是一個4次方函式。它的定義域是任意實數。該函式在整個實數期間是連續的、處處可導的。
很容易求得方程 f(x)=0 共有且僅有四個解,即函式的影象有4次與x軸相交,交點分別在x軸上的x=1,2,3,4處。函式是x的4次方函式,當x趨近正負無窮大時,函式值都是正無窮大。因此,在(- ∞,1)和(4,+ ∞)區間,函式的影象都是處於x軸的上方直至正無窮大。
函式的一階導數就是函式影象上某點的切線直線的斜率。令函式一階導數等於0的方程,就是要求函式影象上哪些點的切線的斜率平行於x軸方向的問題,平行於x軸方向的切線斜率為0。因為4次方函式的一階導數是一個3次方函式,又因為原函式影象是連續的處處可導的,它的一階導數的3次方函式也是連續的處處可導的。
令原函式的一階導數等於0 的方程是一個3次方方程,它有且僅有3個根。原函式在與x軸相交的4點之間的三段影象中,每一段必然存在著影象的一個極值點,在該極值點的影象切線的斜率為0、切線平行於x軸。從而可得:
方程 f'(x)=0的3個實根分別在區間(1,2),(2,3),(3,4)上。
2樓:古寧鄂碧
如要粗略判斷,可畫出f(x)的草圖,根據單調性可知,f'(x)=0有3個實根,所在區間為(1,2),(2,3)(3,4)。
3樓:查秀愛錢女
導數的實根即導數等於0的x值
顯然f(x)有4個實根,即123
4由微分中值定理
在(1,2)中存在a使f'(a)=[f(1)-f(2)]/1=0同理在(2,3),(3,4)中……
所以f(x)的導數有4-1=3個實根
4樓:韓望亭咎嫻
令f(x)=0則x=1,2,3,4
∴f(1)=f(2)=f(3)=f(4)=0又f(x)在區間[1,2]上連續,在區間〔1,2〕上可導,f(1)=f(2)=0
由羅爾定理可知:
方程f'(x)=0在區間(1,2)至少存在一個實根同理可知:
方程f'(x)=0分別在區間(2,3)(3,4)都至少存在一個實根又f'(x)=0為三次方程,其根至多三個
∴f'(x)=0有三個實根,其區間分別是(1,2),(2,3),(3,4)
不用求函式f(x)=(x-1)(x-2)(x-3)(x-4)的導數,說明方程f′(x)=0有幾個實根,並指出他們的所在的區間,謝謝
5樓:我是杜鵑
函式f(x)=(x-1)(x-2)(x-3)(x-4),顯然是一個4次方函式。它的定義域是任意實數。該函式在整個實數期間是連續的、處處可導的。
很容易求得方程 f(x)=0 共有且僅有四個解,即函式的影象有4次與x軸相交,交點分別在x軸上的x=1,2,3,4處。函式是x的4次方函式,當x趨近正負無窮大時,函式值都是正無窮大。因此,在(- ∞,1)和(4,+ ∞)區間,函式的影象都是處於x軸的上方直至正無窮大。
函式的一階導數就是函式影象上某點的切線直線的斜率。令函式一階導數等於0的方程,就是要求函式影象上哪些點的切線的斜率平行於x軸方向的問題,平行於x軸方向的切線斜率為0。因為4次方函式的一階導數是一個3次方函式,又因為原函式影象是連續的處處可導的,它的一階導數的3次方函式也是連續的處處可導的。
令原函式的一階導數等於0 的方程是一個3次方方程,它有且僅有3個根。原函式在與x軸相交的4點之間的三段影象中,每一段必然存在著影象的一個極值點,在該極值點的影象切線的斜率為0、切線平行於x軸。從而可得:
方程 f'(x)=0的3個實根分別在區間(1,2),(2,3),(3,4)上。
6樓:
因為函式f(x)是連續函式,所以f′(x)=0就是函式f(x)取極值的時候。
函式f(x)經過(1,0)(2,0)(3,0)(4,0),其餘時候不經過x軸,所以它的極值有三個,分別在(1,2)(2,3)(3,4)區域內,也就是導數等於0的根
7樓:匿名使用者
不用求函式f(x)=(x-1)(x-2)(x-3)(x-4)的導數,說明方程f′(x)=0有幾個實根,並指出他們的所在的區間
方程f′(x)=0有3個實根,所在區間分別為(1,2),(2,3),(3,4)
根據f(x)的極值個數即可推斷出f′(x)=0的實根個數
8樓:愛銳鋒
導數那個就不多說了,根據羅爾中值定理:f(x)在區間[a,b]上可導,且f(a)=f(b),那麼存在ξ∈[a,b],f'(ξ)=0,∴f'(x)在[1,2],[2,3],[3,4]上各有一個ξ,f'(ξ)=0
第二個也不難:
方法一:考察f(x)=nb^(n-1)*(x-b),g(x)=x^n-b^n
f(b)=g(b)=0
當x>b>0時,f'(x)=nb^(n-1),g'(x)=nx^(n-1)
∴f'(x)<g'(x)
∴[g(x)-f(x)]'>0,當x>b時,設h(x)=g(x)-f(x)
∴h(b)=0,由拉格朗日中值定理:存在ξ∈[b,a]
h(a)-h(b)=h'(ξ)*(a-b)=h(a)
∵h'(ξ)>0,a-b>0
∴h(a)>0,∴g(a)>f(a)
另一邊:同理設f(x)=a^n-x^n,g(x)=na^(n-1)*(a-b)
即可證。
方法二:a^n-b^n=(a-b)[∑a^i*b^(n-1-i)],i=1,2,…,n-1
∵b^(n-1)=b^i*b^(n-1-i)<a^i*b^(n-1-i)<a^i*a^(n-i-1)=a^(n-1)
∴nb^(n-1)*()a-b<a^n-b^n 9樓: 應該可以解決你的問題 不用求出函式f(x)=(x+1)(x+2)(x-1)(x-2)的導數,說明方程f(x)的導數等於0 10樓:一個人郭芮 記住羅爾定理,如果函式f(x)滿足條件 (1)在閉區間 [a,b] 上連續,(2)在開區間 (a,b) 內可導, (3)f(a)=f(b),則至少存在一個 ξ∈(a,b),使得 f'(ξ)=0 那麼在這裡f(x)=0的點顯然有4個-2,-1,1,2於是導數等於0的點就有3個 分別在(-2,-1),(-1,1),(1,2)的區間上 望穿秋水 f x x 1,x 0 x 2 2x 1,x 0。當x 0時 f x af x 0 f x f x a 0 x 1 x 1 a 0 得 x 1 或 x a 1 a 1 0 a 1當x 0時 x 2x 1 x 2x 1 a 0 x 1 x 1 a 0 得 x 1 或 x 1 a x 1 a ... 解 1 p x f x g x x3 k 1 x2 k 5 x 1,p x 3x2 2 k 1 x k 5 因為p x 在 0,3 上不單調,所以p x 0在 0,3 上有實數解,且無重根,由p x 0,得k 2x 1 3x2 2x 5 即令t 2x 1,有t 1,7 記 則h t 在 1,3 上單... 我才是無名小將 f x 可導且連續,f 1 f 2 f 3 0 所以存在x1,x2分別在 1,2 2,3 之內,使f x1 f x2 0 f x 是二次函式,最多有兩個零點 指點群豪戲 有兩個根,分別區間 1,2 2,3 之間。可以模擬函式的圖象,可以看出f x 有兩個駐點。 軒轅無魚 2個,1,2...函式f xx 1,x,函式f x x 1,x 0
已知函式f x x 3 k 2 k 1 x 2 5x 2,g xk 2 x 2 kx 1,其中k屬於R
不求函式f xx 1 x 2 x 3 導數,說明方程fx)0有幾個實根,並指出這些根所在的區間