若已知兩條直線的方程,怎樣求這兩條直線的角平分線

時間 2021-09-10 08:40:48

1樓:隋遠賞衣

首先,不是方程,是一次函式表示式。

先用餘弦定理求這2條直線的夾角(o)再加上直線1、2中斜率小的指線的方位角:即斜率的反正切(p)。這時你就有了角平分線的方位角了,根據方位角求出斜率。

再根據1、2直線的交點也是平分線上的點,就可以求出其方程了。

2樓:初運旺茹辛

已知:直線l1:a1x+b1y+c1=0,l2:a2x+b2y+c2=0相交於p(x0,y0)

求:它們對角的兩條平分直線方程.

方法:(1)求l1、l2的單位方向向量

l1方程兩邊同除以√(a1²+b1²)

得l1:a1x+b1y+c1=0,

(a1,b1)是l1的一個單位法向量

同法:l2:a2x+b2y+c2=0

(a2,b2)是l2的一個單位法向量

(b1,-a1)是l1的一個單位方向向量

(b2,-a2)是l2的一個單位方向向量

(2)求平分對角直線的法向量

(b1,-a1)+(b2,-a2)=(b1+b2,-a1-a2)是一條平分對角直線的方向向量

(a1+a2,b1+b2)是其法向量

同時(b1+b2,-a1-a2)也是另一條平分對角直線的法向量(它們垂直)

(3)所求二直線方程是:

(a1+a2)(x-x0)+(b1+b2)(y-y0)=0

(b1+b2)(x-x0)-(a1+a2)(y-y0)=0

例:直線l1:3x+4y-7=0,l2:5x-12y+7=0交於(1,1).求它們對角的兩條平分直線方程.

解:l1:(3/5)x+(4/5)y-(7/5)=0,l2:(5/13)x-(12/13)y+(7/13)=0

(3/5,4/5)是l1的一個單位法向量

(4/5,-3/5)是l1的一個單位方向向量

同理(12/13,5/13)是l2的一個單位方向向量

(4/5,-3/5)+(12/13,5/13)=(112/65,-14/65)是一條平分對角直線的方向向量

(14/65,112/65)是其法向量

同時(112/65,-14/65)也是另一條平分對角直線的法向量

得(14/65)(x-1)+(112/65)(y-1)=0

和(112/65)(x-1)-(14/65)(y-1)=0

所以直線方程是:x+8y-9=0,8x-y-7=0

若已知兩條直線的方程,怎樣求這兩條直線的角平分線

3樓:麻木

先用餘弦定理求這2條直線的夾角(o)再加上直線l1、l2中斜率小的指線的方位角:即斜率的反正切(p)。這時就有了角平分線的方位角了,根據方位角求出斜率。

再根據直線l1、l2的交點,即可求出其方程。

也可利用兩直線斜率k以及與x軸所成角計算。 設直線l1斜率k1=tga,直線l2斜率k2=tgb(b為兩直線夾角) 故角平分線l的斜率k=tg((a+b)/2) 其中k、k2、a、b應該為已知,那麼用三角函式求出k=tg((a+b)/2)即可。

4樓:戒貪隨緣

已知: 直線l1:a1x+b1y+c1=0,l2:a2x+b2y+c2=0相交於p(x0,y0)

求:它們對角的兩條平分直線方程.

方法:(1)求l1、l2的單位方向向量

l1方程兩邊同除以√(a1²+b1²)

得 l1:a1x+b1y+c1=0, (a1,b1)是l1的一個單位法向量

同法:l2:a2x+b2y+c2=0 (a2,b2)是l2的一個單位法向量

(b1,-a1)是l1的一個單位方向向量

(b2,-a2)是l2的一個單位方向向量

(2)求平分對角直線的法向量

(b1,-a1)+(b2,-a2)=(b1+b2,-a1-a2)是一條平分對角直線的方向向量

(a1+a2,b1+b2)是其法向量

同時(b1+b2,-a1-a2)也是另一條平分對角直線的法向量(它們垂直)

(3)所求二直線方程是:

(a1+a2)(x-x0)+(b1+b2)(y-y0)=0

(b1+b2)(x-x0)-(a1+a2)(y-y0)=0

例:直線l1:3x+4y-7=0,l2:5x-12y+7=0交於(1,1).求它們對角的兩條平分直線方程.

解:l1:(3/5)x+(4/5)y-(7/5)=0,l2:(5/13)x-(12/13)y+(7/13)=0

(3/5,4/5)是l1的一個單位法向量

(4/5,-3/5)是l1的一個單位方向向量

同理(12/13,5/13)是l2的一個單位方向向量

(4/5,-3/5)+(12/13,5/13)=(112/65,-14/65)是一條平分對角直線的方向向量

(14/65,112/65)是其法向量

同時(112/65,-14/65)也是另一條平分對角直線的法向量

得 (14/65)(x-1)+(112/65)(y-1)=0

和(112/65)(x-1)-(14/65)(y-1)=0

所以直線方程是:x+8y-9=0,8x-y-7=0

5樓:熱血狂魔的春

首先,不是方程,是一次函式表示式。

先用餘弦定理求這2條直線的夾角(o)再加上直線1、2中斜率小的指線的方位角:即斜率的反正切(p)。這時你就有了角平分線的方位角了,根據方位角求出斜率。

再根據1、2直線的交點也是平分線上的點,就可以求出其方程了。

已知兩條相交直線方程,求角平分線方程。怎麼求?

6樓:午後藍山

1、斜率法

設第一直線與x軸夾角為a,第二條為b,解平分線為c,則c=(a+b)/2

tan(c-a)=-tan(c-b)

2、定義法

根據軌跡的定義,解平分線上任一點到兩邊距離相等,設上一點為(x,y),代入點到直線距離公式,解就可以了。

3、特例

如果對稱軸是y=x,則兩條直線,就成點斜式,x變y,y變x 可得直線方程。

7樓:匿名使用者

設l1方程為a1x+b1y+c1=0, l2方程為a2x+b2y+c2=0,那麼l1的傾斜角的正切為-a1/b1,l2的為 -a2/b2,再由夾角公式列方程,即可求出其角平分線的正切值,即斜率,聯立兩條直線的方程求出交點座標,最後用點斜式可寫出角平分線的方程。

8樓:夷義從午

(1)求出這兩個直線方程的交點.因為角平分線方程也過這點嘛

(2)將直線方程的斜率等於tana(a是直線與x正軸的交角)利用tan(a+b),tan(a-b)的關係就可以求出角平分線方程的斜率了..這樣有點麻煩,但是通常老師出題都是把兩條相交直線方程的斜率設為tan(30度)tan(60度),這樣那個兩條相交直線方程的斜率就是1了..通常老師門都不會出這麼難的,除非他是虐待狂或者那題分高啦

已知兩條相交直線方程,求角平分線方程

9樓:匿名使用者

用夾角公式:

假設l1:y=k1x+b1

l2:y=k2x+b2

設角平分線的方程為

y=kx+b

那麼有|k-k1|/(1+k1*k)=|k2-k|/(1+k*k2)

從而解得k

然後根據l1、l2兩直線的方程 求出交點

角平分線同樣過此點

把此點帶入y=kx+b

從而解得b

【例】求兩條直線l1:4x-3y+1=0和l2:12x+5y+13=0所成交的角平分線方程

【解】先求交點

{4x-3y+1=0,12x+5y+13=0

解得x=-11/14,y=-5/7

再求平分線斜率,設為k

則(利用兩直線的夾角公式tanθ=|(k2-k1)/(1+k1*k2)|)

|(4/3-k)/(1+4k/3)|=|(-12/5-k)/(1-12k/5)|

解得k=8或k=-1/8

所以角平分線方程是y+5/7=8(x+11/14)或y+5/7=(-1/8)*(x+11/14)

即56x-7y+39=0或14x+112y+91=0

已知兩條相交直線方程求角平分線方程

10樓:向

(1)求出這兩個直線

方程的交點.因為角平分線方程也過這點嘛

(2)將直線方程的斜率等於tana(a是直線與x正軸的交角)利用tan(a+b),tan(a-b)的關係就可以求出角平分線方程的斜率了..這樣有點麻煩,但是通常老師出題都是把兩條相交直線方程的斜率設為tan(30度)tan(60度),這樣那個兩條相交直線方程的斜率就是1了..通常老師門都不會出這麼難的,除非他是虐待狂或者那題分高啦

11樓:匿名使用者

點到直線的距離會求麼?

設角平分線上任意點p(x,y)

利用p到兩直線的距離相等,列出等式再化簡.

已知兩條直線關於另一條直線對稱,求對稱的直線

先求出兩已知直線的交點,此點必然也在所求直線上,再在對稱的已知直線上任取一點m,找出它關於另一條直線的對稱點m 最後由兩點式便可求出對稱直線方程。注 先設m 的座標,求mm 所在直線的斜率,讓其與另一條直線斜率乘積為 1,再用中點公式,讓mm 的中點滿足對稱軸直線方程,由此兩條件可求得m 將 知道一...

如何確定兩條直線的位置關係,這兩條直線的位置關係怎麼判斷?

陌路情感諮詢 兩直線平行和垂直的判定分為兩類,一種是點斜式進行判定,一種是一般式進行判定。兩直線的斜率相等且在座標軸上的截距不等,或者兩直線的斜率都不存在且兩直線在x軸上的截距不相等,兩直線的斜率之積等於 1,或者一條直線的斜率為0且另一條直線斜率不存在。兩直線共面的充要條件。注意此法一般只有理論意...

已知BE,CF為ABC的兩條中線,BE CF,求證ABC為等腰三角形

證明 過e點作eg fc,交bc延長線於g,連線ef be,cf為 abc的兩條中線 ef是 abc的中位線 ef bc 四邊形efcg是平行四邊形 cf ge be cf be be ebc g eg fc fcb g ebc fcb 又 be cf,bc cb ebc fcb sas ecb f...