1樓:匿名使用者
1449
3,7,9的公倍數,最小公倍數是63,從兩個拿可以知道它是乙個單數,從五個五個拿可以知道尾數不是九就是四,綜合起來就是尾數是九,且是63的倍數,那就分別是三倍,十三倍,二十三倍……尾數才是……9算一下正好二十三倍的時候這些條件都能滿足。
2樓:新野旁觀者
求答案 ? 一筐雞蛋:
1個1個拿,正好拿完。
2個2個拿,正好拿完。
3個3個拿,正好拿完。
4個4個拿,還剩2個。
5個5個拿,還剩4個。
6個6個拿,正好拿完。
7個7個拿,還剩5個。
8個8個拿,還剩2個。
9個9個拿,正好拿完。
問筐裡有多少雞蛋?
1個1個拿正好拿完,3個3個拿正好拿完,7個7個拿正好拿完,9個9個拿正好拿完,框子裡雞蛋的個數是4*9=63的倍數。
2個2個拿剩1個,5個5個拿剩餘1個,個位數是1。
所以從以下數中找: 63×7、 63×17 、63×27 、63×37……
所以最小數是441
3樓:匿名使用者
這個數是8的倍數+1,且能被9整除。個位數字是奇數。這個數+1,能被5整除,又個位數字是奇數,因此,個位數字只能是9。
令這個數為(9-1)n+1
(9-1)n+1=9n-(n-1),要(9-1)n+1能被9整除,n-1能被9整除。
令n-1=9k
8n+1=8(n-1)+9=72k+9
要72k+9的個位數字是9,k是5的整倍數。
72k+9=7p
p=(72k+9)/7=(70k+2k+7+2)/7=10k+1+2(k+1)/7
要p為正整數,2(k+1)/7能被7整除,又2與7互質,因此只有k+1能被7整除。
k為正整數,k是5的整倍數,k最小為20
n=9k+1=9×20+1=181
8n+1=8×181+1=1449
筐裡至少有1449個雞蛋。
4樓:匿名使用者
都回答那麼費勁。看好了。能被379整除,從7*9算,7*9*1,肯定不滿足5,7*9*3尾數9也不滿足5,7*9*7=441滿足所有。
5樓:小吃文
441和,不可能5個5個拿還差乙個,5個5個拿差乙個,只能說明尾數不是4就是9
6樓:匿名使用者
根據給出的9個條件,可得出9個判斷
1、1的倍數,即任意非零整數
2、不能被2整除,是奇數,數目與2相除的餘數為13、3的倍數
4、不能被4整除,不是4的倍數,數目與4相除的餘數為15、不能被5整除,不是5的倍數,數目與5相除的餘數為16、不能被6整除,不是6的倍數,數目與6相除的餘數為37、7的倍數
8、不能被8整除,不是8的倍數,數目與8相除的餘數為19、9的倍數
綜上所述,利用excel的求餘數公式和篩選功能,找到符合條件的最小的數是441,也就是說筐裡最少有441個雞蛋。另,在12000之內,符合條件的數還有2961、5481、8001、10521
7樓:望遠
求答案 ?
一筐雞蛋:
1個1個拿,正好拿完。
2個2個拿,還剩1個。
3個3個拿,正好拿完。
4個4個拿,還剩1個。
5個5個拿,還差1個。
6個6個拿,還剩3個。
7個7個拿,正好拿完。
8個8個拿,還剩1個。
9個9個拿,正好拿完。
問筐裡最少有多少雞蛋?
能算出這道題的智商不一般!求答案
8樓:來自天龍寺辛勤的萱草
加法算的等於88。對不對?
9樓:d小樹林
個位數必須是9,441不對是1449
10樓:
正確答案應該是1089的雞蛋
11樓:
9個、簡直是腦筋急轉彎啊……
12樓:慎思
5個5個拿還剩4個了
13樓:
答案是1×3×7×9=189
14樓:
答案是多少,請告訴我
求答案 ? 一筐雞蛋: 1個1個拿,正好拿完。 2個2個拿,還剩1個。 3個3個
15樓:beling不琳
答:筐裡有1449+2520*n (n是0和正整數) 個雞蛋
解題過程如下:
3、7、9正好拿完,說明被1、3、7、9整除,因為1、3、7、9最小公倍數63,所以這個數可以是63n。
4、8剩1,說明除以2、4、8餘1,因為2、4、8最小公倍數8,所以(63n)除以8餘1,n除以8餘7,n最小為7,所以63n最小值是441,又因為8和63最小公倍數是504,所以這個數可以是(441+504n)。
5剩4,說明除以5餘4,所以(441+504n)除以5餘4,n最小為2,所以(441+504n)最小值為1449,
又因為5和504最小公倍數是2520,所以這個數可以是(1449+2520n)。
拓展資料:
思維是人的一種高階的心理活動形式。
數學思維也就是人們通常所指的數學思維能力,即能夠用數學的觀點去思考問題和解決問題的能力。比如轉化與劃歸,從一般到特殊、特殊到一般,函式/對映的思想,等等。一般來說數學能力強的人,基本體現在兩種能力上,一是聯想力,二是數字敏感度。
前者能夠把兩個看似不相關的問題聯絡在一起,這其中又以構造能力最讓人折服;後者便是大多數**的所謂geek,比如什麼nash之類的。當然也有兩種能力的結合體。
我國初、高中數學教學課程標準中都明確指出,思維能力主要是指:會觀察、實驗、比較、猜想、分析、綜合、抽象和概括;會用歸納、演繹和模擬進行推理;會合乎邏輯地、準確地闡述自己的思想和觀點;能運用數學概念、思想和方法,辨明數學關係,形成良好的思維品質。
16樓:sbc的太陽
答:369個雞蛋;
1.解析:
正好拿完,表示整除;
有剩餘的,表示餘數,有餘數就是說(被除數-餘數)可以被除數整除。 "比如4個4個拿還剩1個"就是說"雞蛋個數-1 可以 被4整除",即正好拿完;
2.解題步驟:
先看幾組數,這裡給編號分別為1 2 3 4 5 6 7 8 9;
滿足1的是所有數,不考慮;
滿足8的一定滿足2和4,因此2和4不考慮;
滿足9的一定滿足3,所以3不考慮;
因此先算滿足 1 2 3 4 5 6 7 8 9的資料,因為1 2 3 4不考慮,只要滿足5 6 7 8 9就可以了;
因為6=2x3 包含在8 9 中,最後驗算;
3.因此得到:
5的情況是7x8x9=504 504÷5=100餘4 滿足;
7的情況是5x8x9=360 360÷7=51餘3 不滿足餘5,取360的4倍1440,360x4÷7=205餘5滿足;
8的情況是5x7x9=315 315÷8=39餘3 不滿足餘1,取315的3倍945 ,315x3÷8=118餘1滿足;
9的情況是5x7x8=280 280÷9=34餘4 不滿足餘0,取5x7x8x9=2520;
計算滿足5 7 8 9的資料為:504 + 1440 + 945 + 2520 = 5409;
驗算這個資料 同時滿足 5 7 8 9條件;
計算5x7x8x9=2520,因此滿足條件的更小資料是5409-2520x2=369;
驗算369這個資料是否滿足6的情況,不滿足就取其倍數。 369÷6=61餘3正好滿足。;
驗算369÷1=369餘0;
驗算369÷2=184餘1;
驗算369÷3=123餘0;
驗算369÷4=92餘1;
驗算369÷5=73餘4;
驗算369÷6=61餘3;
驗算369÷7=52餘5;
驗算369÷8=46餘1;
驗算369÷9=41餘0;
所以答案為369。
17樓:豆其英磨香
1個1個拿,正好拿完。3個3個拿,正好拿完。7個7個拿,正好拿完。9個9個拿,正好拿完。此數為7*9=63的倍數。設此數為63n
2個2個拿,還剩1個。4個4個拿,還剩1個。5個5個拿,還剩1個,8個8個拿,還剩1個。此數為5*8=40的倍數+1個.設此數為40k+1
即63n=40k+1
k=(63n-1)/40因為n,k均為正整數所以當n=7時,k的最小值為11
所以這筐雞蛋的最小值為63*7=40*11+1=441個。
2個2個拿,還剩1個。4個4個拿,還剩1個。8個8個拿,還剩1個。說明籃子裡的雞蛋個數為奇數。
3個3個拿,正好拿完。7個7個拿,正好拿完。9個9個拿,正好拿完。說明籃子裡的雞蛋個數為3、7與9的倍數。
5個5個拿,還剩1個,說明個位數為1或6,最終個位數為1.。
綜合上面所說,最少的應該是441,
這個數是2.4.5.8的倍數多1,是1.3.7.9的倍數,是6的倍數多3
∴是441個
3x7x3=63
63對於4,5來說都餘3,對於6餘3,對於8餘7,為了滿足題意需要3x7x3=63在乘以乙個不被2整除數
3x7x3x7=63x7=441
1個1個拿,正好拿完。
......................441除1等於441
2個2個拿,還剩1個。
......................441除2等於220餘1
3個3個拿,正好拿完。
......................441除3等於147
4個4個拿,還剩1個。
.....................441除4等於110餘1
5個5個拿,還剩1個
.....................441除5等於88餘1
6個6個拿,還剩3個。.....................441除6等於73餘3
7個7個拿,正好拿完。.....................441除7等於63
8個8個拿,還剩1個。.....................441除8等於55餘1
9個9個拿,正好拿完。.....................441除9等於49
朋友,請採納正確答案,你們只提問,不採納正確答案,回答都沒有勁!!!
朋友,請【採納答案】,您的採納是我答題的動力,如果沒有明白,請追問。謝謝。
18樓:新野旁觀者
求答案 ?
一筐雞蛋:
1個1個拿,正好拿完。
2個2個拿,還剩1個。
3個3個拿,正好拿完。
4個4個拿,還剩1個。
5個5個拿,還剩1個
6個6個拿,還剩3個。
7個7個拿,正好拿完。
8個8個拿,還剩1個。
9個9個拿,正好拿完。
問筐裡有多少雞蛋?
1個1個拿正好拿完,3個3個拿正好拿完,7個7個拿正好拿完,9個9個拿正好拿完,框子裡雞蛋的個數是4*9=63的倍數。
2個2個拿剩1個,5個5個拿剩餘1個,個位數是1。
所以從以下數中找: 63×7、 63×17 、63×27 、63×37……
所以最小數是441個
求答案一筐雞蛋 拿,正好拿完。 拿
1個1個拿 3個3個拿 7個7個拿 9個9個拿,都正好拿完,這個數是1 3 7 9的公倍數 1 3 7 9的最小公倍數 7 9 63,這個數是63的整倍數。令這個數 63m 6個6個拿,剩3個,即63m能被3整除,不能被2整除。63m是奇數,m為奇數。2個2個拿 4個4個拿 5個5個拿 8個8個拿,...
求答案 一筐雞蛋 拿正好拿完,拿還剩。拿正好拿完。拿還剩
日月同輝 根據題意可知,雞蛋的個數應該是3 7 9的公倍數,並且比2 4 5 8的公倍數多1,比6的倍數多3。2 4 5 8的公倍數是40,所以,雞蛋的個數應該比40的倍數多1 它的個位數字是1.3 7 9的公倍數是63,所以,雞蛋的個數應該是63的倍數。63乘7或者17 27 時,其積的個位數字才...
求答案一筐雞蛋 拿,正好拿完。拿,還剩。拿,正好拿完
解 4 5 8個拿差1個,5個5個拿還剩4個,則加1個是4 5 8的公倍數,即這個數是 40的倍數加1,3 9個拿正好,2個拿餘1個,6個拿餘3個說明是9的倍數且是奇數,那麼這個數一定是40 9n 9 360n 9,7個拿餘5個,即去5後是7的倍數 當n 1時,360 1 9 369,此時除以7餘數...