三角函式如何判斷斂散性,如何判斷用什麼方法判別級數斂散性

時間 2021-05-05 19:04:03

1樓:

函式收斂

定義方式與數列收斂類似。柯西收斂準則:關於函式f(x)在點x0處的收斂定義。

對於任意實數b>0,存在c>0,對任意x1,x2滿足0<|x1-x0|收斂的定義方式很好的體現了數學分析的精神實質。

如果給定乙個定義在區間i上的函式列,u1(x), u2(x) ,u3(x)......至un(x)....... 則由這函式列構成的表示式u1(x)+u2(x)+u3(x)+......

+un(x)+......⑴稱為定義在區間i上的(函式項)無窮級數,簡稱(函式項)級數

對於每乙個確定的值x0∈i,函式項級數 ⑴ 成為常數項級數u1(x0)+u2(x0)+u3(x0)+......+un(x0)+.... (2) 這個級數可能收斂也可能發散。

如果級數(2)發散,就稱點x0是函式項級數(1)的發散點。函式項級數(1)的收斂點的全體稱為他的收斂域 ,發散點的全體稱為他的發散域 對應於收斂域內任意乙個數x,函式項級數稱為一收斂的常數項 級數 ,因而有一確定的和s。

這樣,在收斂域上 ,函式項級數的和是x的函式s(x),通常稱s(x)為函式項級數的和函式,這函式的定義域就是級數的收斂域,並寫成s(x)=u1(x)+u2(x)+u3(x)+......+un(x)+......把函式項級數 ⑴ 的前n項部分和 記作sn(x),則在收斂域上有lim n→∞sn(x)=s(x)

記rn(x)=s(x)-sn(x),rn(x)叫作函式級數項的餘項 (當然,只有x在收斂域上rn(x)才有意義,並有lim n→∞rn (x)=0

擴充套件資料

推導方法

定名法則

90°的奇數倍+α的三角函式,其絕對值與α三角函式的絕對值互為餘函式。90°的偶數倍+α的三角函式與α的三角函式絕對值相同。也就是「奇餘偶同,奇變偶不變」。

定號法則

將α看做銳角(注意是「看做」),按所得的角的象限,取三角函式的符號。也就是「象限定號,符號看象限」(或為「奇變偶不變,符號看象限」)。

在kπ/2中如果k為偶數時函式名不變,若為奇數時函式名變為相反的函式名。正負號看原函式中α所在象限的正負號。關於正負號有個口訣;一全正,二正弦,三兩切,四余弦,即第一象限全部為正,第二象限角,正弦為正,第三象限,正切和餘切為正,第四象限,余弦為正。

或簡寫為「astc」,即「all」「sin」「tan+cot」「cos」依次為正。還可簡記為:sin上cos右tan/cot對角,即sin的正值都在x軸上方,cos的正值都在y軸右方,tan/cot 的正值斜著。

比如:90°+α。定名:

90°是90°的奇數倍,所以應取餘函式;定號:將α看做銳角,那麼90°+α是第二象限角,第二象限角的正弦為正,余弦為負。所以sin(90°+α)=cosα , cos(90°+α)=-sinα 這個非常神奇,屢試不爽~

還有乙個口訣「縱變橫不變,符號看象限」,例如:sin(90°+α),90°的終邊在縱軸上,所以函式名變為相反的函式名,即cos,所以sin(90°+α)=cosα。

2樓:福隆先生

∑(n∈1~無窮)sin1/n 發散

∑(n∈1~無窮)sin²1/ 收斂

3樓:疼惡人疼

sin1/n~1/n﹙等價無窮小﹚

∑(n∈1~無窮﹚1/n是調和級數,所以發散

所以∑(n∈1~無窮)sin1/n發散

如何判斷用什麼方法判別級數斂散性

4樓:護具骸骨

用比值法。

被定義的抄物襲理量往往是反映物質的

bai最本質的屬性,它不隨定義du

所用的物理量的zhi大小取捨而改變,如確dao定的電場中的某一點的場強就不隨q、f而變。

當然用來定義的物理量也有一定的條件,如q為點電荷,s為垂直放置於勻強磁場中的乙個面積等。

如圖所示:

比值法定義的基本特點:

被定義的物理量往往是反映物質的最本質的屬性,它不隨定義所用的物理量的大小取捨而改變,如確定的電場中的某一點的場強就不隨q、f而變。

用來定義的物理量有一定的條件,如q為點電荷,s為垂直放置於勻強磁場中的乙個面積等。

比值法適用於物質屬性或特徵、物體運動特徵的定義。由於它們在與外界接觸作用時會顯示出一些性質,這就提供了利用外界因素來表示其特徵的間接方式。

借助實驗尋求乙個只與物質或物體的某種屬性特徵有關的兩個或多個可以測量的物理量的比值,就能確定乙個表徵此種屬性特徵的新物理量。

5樓:假面

用比值法,具體回答如

copy圖:

被定義的物理量bai往往是反映物質du的最本質的屬性,它不隨定zhi義所用的物理量的大小取捨dao而改變,如確定的電場中的某一點的場強就不隨q、f而變。

當然用來定義的物理量也有一定的條件,如q為點電荷,s為垂直放置於勻強磁場中的乙個面積等。

6樓:

一般用來做參照的級數最常用的是等比級數和p級數,其實,用比較判別法基本專上是用p級數作為參照級屬數,如果用來參照的級數是等比級數,那就不必用比較判別法,而應用比值判別法了。用比較判別法的技巧是:先判斷級數一般項極限是否為零,不為零,則級數發散,若一般項極限為零,找與一般項同階的無窮小,而且通常是p級數的一般項,從而由此p級數的斂散性確定原級數的斂散性。

三角函式,求解,求解三角函式

sin cos 1 2,0,sin cos 1 4 1 2sin cos 1 4 2sin cos 3 4 0 所以,2,那麼,sin cos 1 2sin cos 1 3 4 7 4 所以,sin cos 7 2 所以,sin 1 7 4,cos 1 7 4所以,tan sin cos 4 7 3...

三角函式如何確定象限範圍,給出三角函式範圍,怎麼看三角函式象限

愛運動的小矮子 1 從定義中確定.比如sina y r,這個y即為縱座標,而r 0,sina就被它的縱座標的符號確定.在上半平面 一,二象限 為正,下半平面為負 比如cosa x r,這個x即為橫座標,而r 0,cosa就被它的橫座標的符號確定.在右半平面 一,四象限 為正,左半平面為負 比如tan...

什麼是反三角函式,代數函式,三角函式

脈殘 你好,很高興為你解答 反三角函式 sinx a,則a arcsinx.反三角函式 cosx a,則a arccosx.反三角函式 tanx a,則a arctanx.反三角函式 三角函式 三角函式 也叫做 圓函式 是角的函式 它們在研究三角形和建模週期現象和許多其他應用中是很重要的。三角函式通...