1樓:518姚峰峰
三角函式常用公式:(^表示乘方,例如^2表示平方)
正弦函式 sinθ=y/r
余弦函式 cosθ=x/r
正切函式 tanθ=y/x
餘切函式 cotθ=x/y
正割函式 secθ=r/x
餘割函式 cscθ=r/y
以及兩個不常用,已趨於被淘汰的函式:
正矢函式 versinθ =1-cosθ
餘矢函式 vercosθ =1-sinθ
同角三角函式間的基本關係式:
·平方關係:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
·積的關係:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
·倒數關係:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
直角三角形abc中,
角a的正弦值就等於角a的對邊比斜邊,
余弦等於角a的鄰邊比斜邊
正切等於對邊比鄰邊,
三角函式恒等變形公式
·兩角和與差的三角函式:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·輔助角公式:
asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中
sint=b/(a^2+b^2)^(1/2)
cost=a/(a^2+b^2)^(1/2)
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
·半形公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=vercos(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
·萬能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·積化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
三角函式公式大全
2樓:景煊承恩霈
^^平方關係
sin^2(α)
cos^2(α)=1
cos(2a)=cos^2(a)-sin^2(a)=1-
2sin^2(a)=2cos^2(a)-1
sin(2a)=2sin(a)cos(a)
tan^2(α)
1=1/cos^2(α)
2sin^2(a)=1-cos(2a)
cot^2(α)
1=1/sin^2(a)
積的關係
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
cotα=cosα×cscα
secα=tanα×cscα
cscα=secα×cotα
倒數關係
tanα
·cotα=1
sinα
·cscα=1
cosα
·secα=1
商的關係
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
sinβ
cosβ
tanβ
cotβ
secβ
cscβ
360°k
αsinα
cosα
tanα
cotα
secα
cscα
90°-α
cosα
sinα
cotα
tanα
cscα
secα
90°α
cosα
-sinα
-cotα
-tanα
-cscα
secα
180°-α
sinα
-cosα
-tanα
-cotα
-secα
cscα
180°
α-sinα
-cosα
tanα
cotα
-secα
-cscα
270°-α
-cosα
-sinα
cotα
tanα
-cscα
-secα
270°
α-cosα
sinα
-cotα
-tanα
cscα
-secα
360°-α
-sinα
cosα
-tanα
-cotα
secα
-cscα
﹣α-sinα
cosα
-tanα
-cotα
secα
-cscα
兩角和與差的三角函式
cos(α
β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ
sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α
β)=(tanα
tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1
tanα·tanβ)
和差化積
公式sinα
sinβ=2sin[(α
β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α
β)/2]sin[(α-β)/2]
cosα
cosβ=2cos[(α
β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α
β)/2]sin[(α-β)/2]
積化和差公式
sinα·cosβ=(1/2)[sin(α
β)sin(α-β)]
cosα·sinβ=(1/2)[sin(α
β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α
β)cos(α-β)]
sinα·sinβ=-(1/2)[cos(α
β)-cos(α-β)]
倍角公式
sin(2α)=2sinα·cosα=2/(tanα
cotα)
cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2
tan(2α)=2tanα/(1-tan^2α)
cot(2α)=(cot^2α-1)/(2cotα)
sec(2α)=sec^2α/(1-tan^2α)
csc(2α)=1/2*secα·cscα
三倍角公式
sin(3α)
=3sinα-4sin^3α
=4sinα·sin(60°
α)sin(60°-α)
cos(3α)
=4cos^3α-3cosα
=4cosα·cos(60°
α)cos(60°-α)
tan(3α)
=(3tanα-tan^3α)/(1-3tan^2α)
=tanαtan(π/3
α)tan(π/3-α)
cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)
n倍角公式
sin(nα)=ncos^(n-1)α·sinα-c(n,3)cos^(n-3)α·sin^3α
c(n,5)cos^(n-5)α·sin^5α-…
cos(nα)=cos^nα-c(n,2)cos^(n-2)α·sin^2α
c(n,4)cos^(n-4)α·sin^4α-…
半形公式
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1
cosα)/2)
tan(α/2)=±√((1-cosα)/(1
cosα))=sinα/(1
cosα)=(1-cosα)/sinα
cot(α/2)=±√((1
cosα)/(1-cosα))=(1
cosα)/sinα=sinα/(1-cosα)
sec(α/2)=±√((2secα/(secα
1))csc(α/2)=±√((2secα/(secα-1))
輔助角公式
asinα
bcosα=√(a^2
b^2)sin(α
φ)(tanφ=b/a)
asinα
bcosα=√(a^2
b^2)cos(α-φ)(tanφ=a/b)
萬能公式
sin(a)=
(2tan(a/2))/(1
tan^2(a/2))
cos(a)=
(1-tan^2(a/2))/(1
tan^2(a/2))
tan(a)=
(2tan(a/2))/(1-tan^2(a/2))
降冪公式
sin^2α=(1-cos(2α))/2=versin(2α)/2
cos^2α=(1
cos(2α))/2=covers(2α)/2
tan^2α=(1-cos(2α))/(1
cos(2α))
三角和的三角函式
sin(α
βγ)=sinα·cosβ·cosγ
cosα·sinβ·cosγ
cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α
βγ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α
βγ)=(tanα
tanβ
tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
其它公式
1sin(a)=(sin(a/2)
cos(a/2))^2
1-sin(a)=(sin(a/2)-cos(a/2))^2
csc(a)=1/sin(a)
sec(a)=1/cos(a)
cos30=sin60
sin30=cos60
推導公式
tanα
cotα=2/sin2α
tanα-cotα=-2cot2α
1cos2α=2cos^2α
1-cos2α=2sin^2α
1sinα=[sin(α/2)
cos(α/2)]^2
高中三角函式公式 三角函式公式介紹
高中三角函式公式有很多。三角函式是基本初等函式之一,是以角度 數學上最常用弧度制,下同 為自變數,角度對應任意角終邊與單位圓交點座標或其比值為因變數的函式。也可以等價地用與單位圓有關的各種線段的長度來定義。三角函式在研究三角形和圓等幾何形狀的性質時有重要作用,也是研究週期性現象的基礎數學工具。在數學...
三角函式誘導公式問題,關於三角函式誘導公式的問題
以正弦函式sina來說吧,當變成sin a 時,因為 得係數為奇數,所以sin a 與sina之間可能會發生變化,我們可以設角a為第一象限的角,那麼 a 即為第三象限的角,而正弦函式在第三象限是負的,所以sin a sina 當變成sin 2 a 時,的係數為偶數,所以sin 2 a sina 而余...
初中三角函式公式,初中三角函式公式表
以反正弦三角函式計算公式為例 arcsinx arcsiny arcsin x 1 y2 y 1 x2 xy 0或x2 y2 1,arcsinx arcsiny arcsin x 1 y2 y 1 x2 x 0且y 0且x2 y2 1arcsinx arcsiny arcsin x 1 y2 y 1...