分式不等式和分式方程的解法的相同處和不同處各是什麼

時間 2021-08-11 17:33:43

1樓:餜惐餜惏

分式不等式在進行計算時如果是異分母的話是要通分再進行的,不能去分母因為它只是乙個整式;而分式方程是去分母,即異分母時要方程等號兩邊乘以最簡共分母去掉分母,成為整式方程再計算,這就是不同之處——乙個不能去分母要通分,乙個是去分母再計算~明白了吧~

2樓:愛因斯坦彭

⑴提公因式法

各項都含有的公共的因式叫做這個多項式各項的公因式。

如果乙個多項式的各項有公因式,可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法。

具體方法:當各項係數都是整數時,公因式的係數應取各項係數的最大公約數;字母取各項的相同的字母,而且各字母的指數取次數最低的;取相同的多項式,多項式的次數取最低的。

如果多項式的第一項是負的,一般要提出「-」號,使括號內的第一項的係數成為正數。提出「-」號時,多項式的各項都要變號。

口訣:找準公因式,一次要提淨;全家都搬走,留1把家守;提負要變號,變形看奇偶。

例如:-am+bm+cm=-m(a-b-c);

a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。

注意:把2a^2+1/2變成2(a^2+1/4)不叫提公因式

⑵公式法

如果把乘法公式反過來,就可以把某些多項式分解因式,這種方法叫公式法。

平方差公式:a^2-b^2=(a+b)(a-b);

完全平方公式:a^2±2ab+b^2=(a±b)^2;

注意:能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(或式)的平方和的形式,另一項是這兩個數(或式)的積的2倍。

立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);

立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);

完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.

公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

例如:a^2 +4ab+4b^2 =(a+2b)^2。

(3)分解因式技巧

1.分解因式與整式乘法是互為逆變形。

2.分解因式技巧掌握:

①等式左邊必須是多項式;

②分解因式的結果必須是以乘積的形式表示;

③每個因式必須是整式,且每個因式的次數都必須低於原來多項式的次數;

④分解因式必須分解到每個多項式因式都不能再分解為止。

注:分解因式前先要找到公因式,在確定公因式前,應從係數和因式兩個方面考慮。

3.提公因式法基本步驟:

(1)找出公因式;

(2)提公因式並確定另乙個因式:

①第一步找公因式可按照確定公因式的方法先確定係數在確定字母;

②第二步提公因式並確定另乙個因式,注意要確定另乙個因式,可用原多項式除以公因式,所得的商即是提公因式後剩下的乙個因式,也可用公因式分別除去原多項式的每一項,求的剩下的另乙個因式;

③提完公因式後,另一因式的項數與原多項式的項數相同。

[編輯本段]

競賽用到的方法

⑶分組分解法

分組分解是解方程的一種簡潔的方法,我們來學習這個知識。

能分組分解的方程有四項或大於四項,一般的分組分解有兩種形式:二二分法,三一分法。

比如:ax+ay+bx+by

=a(x+y)+b(x+y)

=(a+b)(x+y)

我們把ax和ay分一組,bx和by分一組,利用乘法分配律,兩兩相配,立即解除了困難。

同樣,這道題也可以這樣做。

ax+ay+bx+by

=x(a+b)+y(a+b)

=(a+b)(x+y)

幾道例題:

1. 5ax+5bx+3ay+3by

解法:=5x(a+b)+3y(a+b)

=(5x+3y)(a+b)

說明:係數不一樣一樣可以做分組分解,和上面一樣,把5ax和5bx看成整體,把3ay和3by看成乙個整體,利用乘法分配律輕鬆解出。

2. x^3-x^2+x-1

解法:=(x^3-x^2)+(x-1)

=x^2(x-1)+ (x-1)

=(x-1)(x2+1)

利用二二分法,提公因式法提出x2,然後相合輕鬆解決。

3. x2-x-y2-y

解法:=(x2-y2)-(x+y)

=(x+y)(x-y)-(x+y)

=(x+y)(x-y-1)

利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然後相合解決。

⑷十字相乘法

這種方法有兩種情況。

①x^2+(p+q)x+pq型的式子的因式分解

這類二次三項式的特點是:二次項的係數是1;常數項是兩個數的積;一次項係數是常數項的兩個因數的和。因此,可以直接將某些二次項的係數是1的二次三項式因式分解:

x^2+(p+q)x+pq=(x+p)(x+q) .

②kx^2+mx+n型的式子的因式分解

如果有k=ac,n=bd,且有ad+bc=m時,那麼kx^2+mx+n=(ax+b)(cx+d).

圖示如下:

×c d

例如:因為

1 -3

×7 2

-3×7=-21,1×2=2,且2-21=-19,

所以7x^2-19x-6=(7x+2)(x-3).

十字相乘法口訣:首尾分解,交叉相乘,求和湊中

⑸拆項、添項法

這種方法指把多項式的某一項拆開或填補上互為相反數的兩項(或幾項),使原式適合於提公因式法、運用公式法或分組分解法進行分解。要注意,必須在與原多項式相等的原則下進行變形。

例如:bc(b+c)+ca(c-a)-ab(a+b)

=bc(c-a+a+b)+ca(c-a)-ab(a+b)

=bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b)

=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)

=(bc+ca)(c-a)+(bc-ab)(a+b)

=c(c-a)(b+a)+b(a+b)(c-a)

=(c+b)(c-a)(a+b).

⑹配方法

對於某些不能利用公式法的多項式,可以將其配成乙個完全平方式,然後再利用平方差公式,就能將其因式分解,這種方法叫配方法。屬於拆項、補項法的一種特殊情況。也要注意必須在與原多項式相等的原則下進行變形。

例如:x²+3x-40

=x²+3x+2.25-42.25

=(x+1.5)²-(6.5)²

=(x+8)(x-5).

⑺應用因式定理

對於多項式f(x)=0,如果f(a)=0,那麼f(x)必含有因式x-a.

例如:f(x)=x²+5x+6,f(-2)=0,則可確定x+2是x²+5x+6的乙個因式。(事實上,x²+5x+6=(x+2)(x+3).)

注意:1、對於係數全部是整數的多項式,若x=q/p(p,q為互質整數時)該多項式值為零,則q為常數項約數,p最高次項係數約數;

2、對於多項式f(a)=0,b為最高次項係數,c為常數項,則有a為c/b約數

⑻換元法

有時在分解因式時,可以選擇多項式中的相同的部分換成另乙個未知數,然後進行因式分解,最後再轉換回來,這種方法叫做換元法。

注意:換元後勿忘還元.

例如在分解(x²+x+1)(x²+x+2)-12時,可以令y=x²+x,則

原式=(y+1)(y+2)-12

=y²+3y+2-12=y²+3y-10

=(y+5)(y-2)

=(x²+x+5)(x²+x-2)

=(x²+x+5)(x+2)(x-1).

也可以參看右圖。

⑼求根法

令多項式f(x)=0,求出其根為x1,x2,x3,……xn,則該多項式可分解為f(x)=(x-x1)(x-x2)(x-x3)……(x-xn) .

例如在分解2x^4+7x^3-2x^2-13x+6時,令2x^4 +7x^3-2x^2-13x+6=0,

則通過綜合除法可知,該方程的根為0.5 ,-3,-2,1.

所以2x^4+7x^3-2x^2-13x+6=(2x-1)(x+3)(x+2)(x-1).

⑽圖象法

令y=f(x),做出函式y=f(x)的圖象,找到函式影象與x軸的交點x1 ,x2 ,x3 ,……xn ,則多項式可因式分解為f(x)= f(x)=(x-x1)(x-x2)(x-x3)……(x-xn).

與方法⑼相比,能避開解方程的繁瑣,但是不夠準確。

例如在分解x^3 +2x^2-5x-6時,可以令y=x^3; +2x^2 -5x-6.

作出其影象,與x軸交點為-3,-1,2

則x^3+2x^2-5x-6=(x+1)(x+3)(x-2).

⑾主元法

先選定乙個字母為主元,然後把各項按這個字母次數從高到低排列,再進行因式分解。

⑿特殊值法

將2或10代入x,求出數p,將數p分解質因數,將質因數適當的組合,並將組合後的每乙個因數寫成2或10的和與差的形式,將2或10還原成x,即得因式分解式。

例如在分解x^3+9x^2+23x+15時,令x=2,則

x^3 +9x^2+23x+15=8+36+46+15=105,

將105分解成3個質因數的積,即105=3×5×7 .

注意到多項式中最高項的係數為1,而3、5、7分別為x+1,x+3,x+5,在x=2時的值,

則x^3+9x^2+23x+15可能等於(x+1)(x+3)(x+5),驗證後的確如此。

⒀待定係數法

首先判斷出分解因式的形式,然後設出相應整式的字母係數,求出字母係數,從而把多項式因式分解。

例如在分解x^4-x^3-5x^2-6x-4時,由分析可知:這個多項式沒有一次因式,因而只能分解為兩個二次因式。

於是設x^4-x^3-5x^2-6x-4=(x^2+ax+b)(x^2+cx+d)

=x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd

由此可得a+c=-1,

ac+b+d=-5,

ad+bc=-6,

bd=-4.

解得a=1,b=1,c=-2,d=-4.

則x^4-x^3-5x^2-6x-4=(x^2+x+1)(x^2-2x-4).

也可以參看右圖。

⒁雙十字相乘法

雙十字相乘法屬於因式分解的一類,類似於十字相乘法。

雙十字相乘法就是二元二次六項式,啟始的式子如下:

ax^2+bxy+cy^2+dx+ey+f

x、y為未知數,其餘都是常數

用一道例題來說明如何使用。

例:分解因式:x^2+5xy+6y^2+8x+18y+12.

分析:這是乙個二次六項式,可考慮使用雙十字相乘法進行因式分解。

解:圖如下,把所有的數字交叉相連即可

x 2y 2

① ② ③

x 3y 6

∴原式=(x+2y+2)(x+3y+6).

雙十字相乘法其步驟為:

①先用十字相乘法分解2次項,如十字相乘圖①中x^2+5xy+6y^2=(x+2y)(x+3y);

②先依乙個字母(如y)的一次係數分數常數項。如十字相乘圖②中6y²+18y+12=(2y+2)(3y+6);

③再按另乙個字母(如x)的一次係數進行檢驗,如十字相乘圖③,這一步不能省,否則容易出錯。

[編輯本段]

多項式因式分解的一般步驟:

①如果多項式的各項有公因式,那麼先提公因式;

②如果各項沒有公因式,那麼可嘗試運用公式、十字相乘法來分解;

③如果用上述方法不能分解,那麼可以嘗試用分組、拆項、補項法來分解;

④分解因式,必須進行到每乙個多項式因式都不能再分解為止。

也可以用一句話來概括:「先看有無公因式,再看能否套公式。十字相乘試一試,分組分解要合適。」

幾道例題

1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2.

解:原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(補項)

=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(完全平方)

=[(1+y)+x^2(1-y)]^2-(2x)^2

=[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x]

=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)

=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]

=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).

2.求證:對於任何實數x,y,下式的值都不會為33:

x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5.

解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)

=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)

=(x+3y)(x^4-5x^2y^2+4y^4)

=(x+3y)(x^2-4y^2)(x^2-y^2)

=(x+3y)(x+y)(x-y)(x+2y)(x-2y).

(分解因式的過程也可以參看右圖。)

當y=0時,原式=x^5不等於33;當y不等於0時,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四個以上不同因數的積,所以原命題成立。

3..△abc的三邊a、b、c有如下關係式:-c^2+a^2+2ab-2bc=0,求證:這個三角形是等腰三角形。

分析:此題實質上是對關係式的等號左邊的多項式進行因式分解。

證明:∵-c^2+a^2+2ab-2bc=0,

∴(a+c)(a-c)+2b(a-c)=0.

∴(a-c)(a+2b+c)=0.

∵a、b、c是△abc的三條邊,

∴a+2b+c>0.

∴a-c=0,

即a=c,△abc為等腰三角形。

4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式。

解:-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)

=-6x^n×y^(n-1)(2x^n×y-3x^2y^2+1).

[編輯本段]

因式分解四個注意:

因式分解中的四個注意,可用四句話概括如下:首項有負常提負,各項有「公」先提「公」,某項提出莫漏1,括號裡面分到「底」。 現舉下例 可供參考

例1 把-a2-b2+2ab+4分解因式。

解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2)

這裡的「負」,指「負號」。如果多項式的第一項是負的,一般要提出負號,使括號內第一項係數是正的。防止學生出現諸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的錯誤

例2把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1)

這裡的「公」指「公因式」。如果多項式的各項含有公因式,那麼先提取這個公因式,再進一步分解因式;這裡的「1」,是指多項式的某個整項是公因式時,先提出這個公因式後,括號內切勿漏掉1。

分解因式,必須進行到每乙個多項式因式都不能再分解為止。即分解到底,不能半途而廢的意思。其中包含提公因式要一次性提「乾淨」,不留「尾巴」,並使每乙個括號內的多項式都不能再分解。

防止學生出現諸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的錯誤。

初二分式方程的解法,初二解分式方程十道題

號兩邊同乘最簡公分母,約去分母,使之成為乙個整式方程,解完整式方程後還要把值代入公分母檢驗,如果結果為0,那麼就稱這個解為 增根 該分式方程就無解,如果不 0,那麼,該值就為原方程的解!只要把x 1分之1 x 5分之1 x 2分之1 x 4分之1的最簡公分母,下一步就好做了,自己試試看吧。首先x 1...

分式方程的增根是什麼,分式方程的增根是什麼意思?

紀桂蘭漫君 在方程變形時,有時可能產生不適合原方程的根,這種根叫做原方程的增根。如果一個分式方程的根能使此方程的公分母為零,那麼這個根就是原方程的增根。增根的產生的原因 對於分式方程,當分式中,分母的值為零時,無意義,所以分式方程,不允許未知數取那些使分母的值為零的值,即分式方程本身就隱含著分母不為...

絕對值不等式的解法,絕對值不等式解法

解決與絕對值有關的問題 如解絕對值不等式,解絕對值方程,研究含有絕對值符號的函式等等 其關鍵往往在於去掉絕對值的符號。而去掉絕對值符號的基本方法有二 其一為平方,其二為討論。所謂平方,比如,x 3,可化為x 2 9,絕對值符號沒有了!所謂討論,即x 0時,x x x 0時,x x,絕對值符號也沒有了...