1樓:戒貪隨緣
約定:[ ]內是下標
答:對a、b、c的否定只需舉反例即可。
a[n]=2+(1/10)^n, 顯然a=2(a) a/2=1 恆不成立;
(b) 恆不成立
(c) 恆不成立
希望能幫到你!
2樓:
不用證明了。這個題的題意你沒搞清楚。他的意思是,n將要趨近無窮大時,也就是an的極限必須滿足的條件。只有d符合。
這是極限保號定理那裡的。你翻一下,課本那裡有現成的。你理解為了n還沒到無窮大
3樓:匿名使用者
an以a為極限,即存在n,對任意的e大於零,都有,當n大於n(即當an充分大)時,an-a的絕對值小於e即an屬於區間(a-e,a+e),所以n趨於無窮時an可能稍微大於或稍微小於a,但是都落在a的(某一鄰域)e鄰域中,因此a,b,c都錯,當e取a/2時,可得d對
4樓:匿名使用者
約定內為下標
lim a[n]=a可得lim |a[n]|=|a|,即lim |a[n]|-|a|=0,lim |a[n]|-|a|/2=|a|/2,於是a、c均已排除
至於b,只要考慮a<0的可能性即可
若lim(n→∞)an=a≠0,則當n充分大時,任意ε>0,存在n>0,當n>n時,恆有|an-a|<ε
5樓:看如何無悔
利用stolz定理,是最簡單的做法
結論是明顯的~
如果不用stolz定理,做法其實也不難~
lim(n→∞)a(n+1)/a(n)=a根據定義:
對任意ε>0,存在n>0,當n>n,就有|a(n+1)/a(n)-a|
stolz定理: 設有數列an,bn 若bn>0遞增且有n→+∞時bn→+∞ 則有: 若lim(a(n+1)-an)/(b(n+1)-bn)=l 則,lim(an)/(bn)=l 因為lim a(n+1)/an=a,且an>0, 故a≥0 同取對數:
ln[lim a(n+1)/an]=lna lim ln[a(n+1)/an] = lna lim lna(n+1) - lnan = lna 即: lim [lna(n+1) - lnan] / 1 =lna 進而構造: lim [lna(n+1) - lnan] / [(n+1)-(n)] =lna 令,an=lnan ,bn=n 原式變為:
lim(a(n+1)-an)/(b(n+1)-bn)=lna 明顯,bn=n>0,單調遞增,且n→+∞時bn→+∞ 根據stolz定理,就有 lim an/bn=lna 即, lim lnan / n = lna 即, lim ln(an^(1/n)) = lna 即, ln lim an^(1/n) =lna 因此, lim an^(1/n) = a
高數極限習題 證明:若lim(xn)=a (n→∞),則 lim(∣xn∣)=∣a∣ (n→∞)
6樓:匿名使用者
1、記x1=√2,x(n+1)=√(2+xn),歸納法可以證明0<xn<2,從而證得{xn}遞增,所以xn有極限,設為a,在遞推公式兩邊取極限得a=√(2+a),解得a=2
2、[x]是取整函式吧
x→0+時,1/x≤[1/x]≤1/x+1,所以1≤x[1/x]≤x+1,由夾逼準則,x[1/x]→1
x→-時,1/x-1≤[1/x]≤1/x,所以1-x≤x[1/x]≤1,由夾逼準則,x[1/x]→1
所以,lim(x→1) x[1/x]=1
高數題求解,大學高數題求解
如圖,剩下的你自己帶入進去吧,我就不弄了,寫不下了 很明顯是需要換元 令ex t 這樣就可以把那個反函式寫開了 letu e x du e x dx arctan e x e x dx arctanu u 2 du arctanu d 1 u 1 u arctanu du u 1 u 2 1 u a...
一道高數題求解,一道高數題求解 20
槍op3987微 解答 f x a x xlnx導數為 a x 2 1 lnx 1 a 2時 f x 2 x 2 1 lnx f 1 2 1 0 1 f x 2 l y x 3 2 若存在x1,x2屬於 0,2 使得g x1 g x2 m成立 則g x1 g x2 最大值大於m g x 3x 2 2...
高數偏導數習題求解急,高數,偏導數題,求解!!
珠海 答 一.1.z x 3x y y 3 z y x 3 3y 2x 2.z x y x 2 y 2 tan x y z y x x 2 y 2 tan x y 3.z x y 2 1 xy y 1 z y ln 1 xy xy 1 xy 1 xy y 4.z x x 2 y 2 x 2 z y ...