1樓:
化簡後為[(1+i)^2]^2/i^4
i^4=1
[(1+i)^2]^2=(2i)^2=-4所以結果為-4
2樓:我不是他舅
(1+i)/i
=i(1+i)/i^2
=(i-1)/(-1)
=1-i
=√2[cos(-π/4)+isin(-π/4)]所以原式=(√2)^4*[cos4*(-π/4)+isin4*(-π/4)]
=4[cos(-π)+isin(-π)]=-4
3樓:希飛燕
先通分再求值 -4i
4樓:
(1+i)^4
=(1+2i+i²)²
=4i²
=-41、加減法
加法法則
複數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數,
則它們的和是,(a+bi)+(c+di)=(a+c)+(b+d)i。
兩個複數的和依然是複數,它的實部是原來兩個複數實部的和,它的虛部是原來兩個虛部的和。
複數的加法滿足交換律和結合律,
即對任意複數z1,z2,z3,有:,z1+z2=z2+z1;,(z1+z2)+z3=z1+(z2+z3)。
2、減法法則
複數的減法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數,
則它們的差是,(a+bi)-(c+di)=(a-c)+(b-d)i。
兩個複數的差依然是複數,它的實部是原來兩個複數實部的差,它的虛部是原來兩個虛部的差。
1的5次方等於多少
5樓:雲南萬通汽車學校
1的5次方也就是五個一相乘,最後還是等於一
所以1的5次方還是一
希望我的回答可以幫助到你。
6樓:木木的橙子丶
額,這個問題
1的多少次方還是1
所以1^5 = 1
7樓:簡簡噢
1的5次方等於1,表示5個1相乘。
計算(1+i)的4次方 要過程
8樓:
(1+i)的4次方
=[(1+i)²]²
=(1+2i-1)²
=(2i)² =-4
這道題是一道複數計算題。
加法法則
複數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數,
則它們的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。
兩個複數的和依然是複數,它的實部是原來兩個複數實部的和,它的虛部是原來兩個虛部的和。
複數的加法滿足交換律和結合律,即對任意複數z1,z2,z3,有: z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。
減法法則
複數的減法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數,
則它們的差是 (a+bi)-(c+di)=(a-c)+(b-d)i。
兩個複數的差依然是複數,它的實部是原來兩個複數實部的差,它的虛部是原來兩個虛部的差。
9樓:匿名使用者
(1+i)的4次方
=[(1+i)²]²
=(1+2i-1)²
=(2i)²=-4
10樓:
(1+i)的4次方
=(1+i)^2×(1+i)^2
=(1+i^2+2i)×(1+i^2+2i)=2i×2i=-4
11樓:匿名使用者
(1+i)∧4=(1+i)²(1+i)²=(1+2i+i²)²=(1+2i-1)²=(2i)²=4i²=-4
5的0次方等於多少,1的5次方等於多少
慄又求白桃 不是a的n次方減a的n次方,而是a的n次方除以a的n次方,同底數冪相除,指數相減,就出來a的0次方了,因為被除數與除數相同,所以等於1,注意a不能為0 範一侯冰冰 任何不是零的數的0次方都等於1.如果真的遇到了本題,當然是 a的0次方 1.即在這裡預設為a不為0 注 如果是道判斷題 a的...
i的2017次方等於多少,i的2017次方
i的2017次方 i的2016次方 i i 的1008次方 1 的1008次方 i 1 i i 5的2018次方 5的2017次方 5 5的2017次方 5的2017次方 4 5的2017次方 對嗎?i的2018次方等於多少 其具體就算結果如下圖所示 資料拓展 1 如果乙個數的平方等於 1,記為i ...
1的30次方是多少,一的30次方等於多少
zero天秤 次方最基本的定義是 設a為某數,n為正整數,a的n次方表示為a 表示n個a連乘所得之結果,如2 2 2 2 2 16。次方的定義還可以擴充套件到0次方和負數次方等等。根據定義1的30次方 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1...