1樓:鹿安珊尤揚
回答:1、是大於零還是大於等於零?
函式在某區間上為增函式,則其導函式在某區間上應該大於等於零。其中導函式只大於零(即等號不成立)的,叫做嚴格增函式。
2、開區間、閉區間、半開半閉的不一樣嗎?
嚴格地講,是不一樣的。但函式在單調性增、減發生變化的那些點(導函式為零)的歸屬,就不那樣嚴格了。例如y=sinx,它的導函式是y『=cosx,在研究單調性是,x=π時,它的歸屬就比較靈活了。
如果[0,2π]上,函式y=sinx的單調減和單調增的區間可寫成[0,
π]與[π,2π],但對於確定嚴格單調區間的話,π處就必須是開區間。
不知這樣的解釋行嗎?
2樓:說淑慧越慕
一般地,在某個區間(a,b)內,如果f'(x)>0,那麼函式y=f(x)在這個區間內單調遞增;如果f'(x)<0,那麼函式y=f(x)在這個區間內單調遞減.
如果在某個區間內恒有f'(x)=0,則f(x)是常數函式.注意:在某個區間內,f'(x)>0是f(x)在此區間上為增函式的充分條件,而不是必要條件,如f(x)=x3在r內是增函式,但x=0時f'(x)=0。也就是說,如果已知f(x)為增函式,解題時就必須寫f'(x)≥0。
1.f'(x)<0是f(x)為減函式的充分不必要條件,不是充要條件。
2.導數為零的點不一定是極值點
若某個函式在某區間是增函式,則導數是不是大於等於零?
3樓:o客
一般的,增函式的導數大於0.
也有增函式的導數大於或等於0的。如y=x^3在r上單增,但y'≥0.
函式在某區間單調遞增,其導函式大於零,還是大於等於零
4樓:陰涵柳欒鳴
導數大於零,函式是增函式,當導數等於零時,函式為極值(最大或最小值),所以如果只是為了證明是增函式,大於零即可。
5樓:大鋼蹦蹦
是大於等於零,但等於0的點是個別點。
6樓:匿名使用者
如:y=x^3 y'=3x^2 y'|x=0 =0 只要y'=0的兩邊導數符號相同,就可以得到單調性
7樓:董宗樺
導數等於零時是一bai個極點,
du理論上求某個區間單調遞zhi增時,導數大於等於dao零是可以的,只專要等屬於零時x 還在定義域內。
我的觀點是;只要可以取到導數等於0 都應該算導數大於等於零(求單調遞增)
當然 求單調遞減時應該算導數小於等於零。反正算進去不會有錯的!!!!
8樓:維·爵爺
確切的說應該是大於0,大於等於零是單調不減函式。
函式在某區間上單調增,則導函式在該區間上是大於0還是大於等於0,詳細點說明。之前看的都挺糊塗。謝謝
9樓:匿名使用者
其實如果說是嚴格單調增的話那麼導函式就是在該區間上大於0的。一般做題中都是大於等於的。
但是你要是非要鑽空子的話,如y=x的平方在上是單調增的沒有疑問,但是導函式在上是大於等於0的,但是你如果是說在區間(0,1)那就是導函式恆大於0了。具體問題是不一樣的。
一般還是讓其大於等於0,如果有的題實在是非要證明大於0,那就再分析。
10樓:匿名使用者
導數在該區間大於0.
導數的值描述了函式的走勢!當函式曲線向上時,函式屬於遞增,其導數值為正;當函式曲線與x軸平行時,函式屬於不增不減,其導數值為0。當函式曲線向下時,函式屬於遞減,其導數值為負。
11樓:匿名使用者
大於等於零,導函式的意義就是函式值的變化趨勢,比如f(x)=x^3就是單調遞增函式 但是它的導函式3x^2在x=0那個點上是零
12樓:匿名使用者
>=0 y=x^3 是單調遞增的,其導數 y'=3x^2 y'(0)=0 當x不等於0時,y'>0 所以其導數大於等於0
13樓:匿名使用者
肯定是大於0的,
即使有斷點,不連續等情況, 導函式也是大於0的.
14樓:匿名使用者
他那是錯的,應該是大於等於零,且fx 恆不為零
15樓:匿名使用者
當然是大於0,y=f(x)
根據導函式
的定義,y'=f(x')-f(x)/x'-x x'趨向於x時的值因為f(x)單調增,所以
如果x'>x 則f(x')-f(x)>0 y'>0如果x'年沒碰了,還不賴吧,哈哈
書上說如果f(x)在某區間為單調增函式 那麼它的導數可能會等於0 我覺得等於0這種情況一定能取啊
16樓:
可以存在有限個f(x)的導數等於零,比如f(x)=x^3,則該函式在x=0處的導數是等於零的,但是函式在整個定義域內都是單調遞增的!
17樓:匿名使用者
當導函式為零時,這可能是個極值點
18樓:匿名使用者
在某區間為單調增函式f(x)的導數不一定等於零,如f(x)=x^2在(0,正無窮大)上是單調遞增函式,在該區間上任意點處的導數都不等於零。再如y=x^3在r上單調遞增,在x=0處,導數等於0
已知導函式在區間上為增函式,原函式影象可能是怎樣,具體的凹凸如何
19樓:匿名使用者
導函式為增,則二階導數大於0,原函式是下凸(或凹)的。
注:導函式為增,原函式不一定增,如f(x)=x²,f'(x)=2x為增,但f(x)在(-∞,0)上減,
f''(x)=2>0,函式是下凸的。
20樓:匿名使用者
其原函式也是增函式,原函式影象向下凸
函式在某區間上為增函式,則其導函式怎樣
艾 一般地,在某個區間 a,b 內,如果f x 0,那麼函式y f x 在這個區間內單調遞增 如果f x 0,那麼函式y f x 在這個區間內單調遞減 如果在某個區間內恒有f x 0,則f x 是常數函式 注意 在某個區間內,f x 0是f x 在此區間上為增函式的充分條件,而不是必要條件,如f x...
函式y logax在區間2上恒有y1,則a的取值範圍是(怎么知道上回答的好幾個問題y都不帶絕對值
1 由於f x x 2 0 可知n 0 f x x 2單調遞增 最小值f n n 2 保值區間則n n 2 n 0或1 保值區間 0,或 1,2 由於g x 1 1 x 0 且定義域x 0 可知ba0 若1 ba0 則g x 1 1 x 1 x 1 在 a,b 上單調遞減 最小值g b 最大值g a...
證明f x x 2 1 x在(1,正無窮)上為單調增函式
作差法。設 p 1,q 1,p q f p p 2 1 p f q q 2 1 q f p 是大於f q 的,因為 f p f q p 2 1 p q 2 1 q p 2 q 2 1 p 1 q p q p q q p pq p q p q 1 pq p q,所以p q 0 p 1,q 1 所以 1...