1樓:匿名使用者
一、《集合與函式》 內容子交並補集,還有冪指對函式。性質奇偶與增減,觀察圖象最明顯。 復合函式式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函式,兩者互為反函式。底數非1的正數,1兩邊增減變故。 函式定義域好求。
分母不能等於0,偶次方根鬚非負,零和負數無對數; 正切函式角不直,餘切函式角不平;其餘函式實數集,多種情況求交集。 兩個互為反函式,單調性質都相同;圖象互為軸對稱,y=x是對稱軸; 求解非常有規律,反解換元定義域;反函式的定義域,原來函式的值域。 冪函式性質易記,指數化既約分數;函式性質看指數,奇母奇子奇函式, 奇母偶子偶函式,偶母非奇偶函式;圖象第一象限內,函式增減看正負。
二、《三角函式》 三角函式是函式,象限符號座標註。函式圖象單位圓,週期奇偶增減現。 同角關係很重要,化簡證明都需要。
正六邊形頂點處,從上到下弦切割; 中心記上數字1,鏈結頂點三角形;向下三角平方和,倒數關係是對角, 頂點任意一函式,等於後面兩**。誘導公式就是好,負化正後大化小, 變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化餘偶不變, 將其後者視銳角,符號原來函式判。
兩角和的余弦值,化為單角好求值, 余弦積減正弦積,換角變形眾公式。和差化積須同名,互餘角度變名稱。 計算證明角先行,注意結構函式名,保持基本量不變,繁難向著簡易變。
逆反原則作指導,公升冪降次和差積。條件等式的證明,方程思想指路明。 萬能公式不一般,化為有理式居先。
公式順用和逆用,變形運用加巧用; 1加余弦想余弦,1 減余弦想正弦,冪公升一次角減半,公升冪降次它為范; 三角函式反函式,實質就是求角度,先求三角函式值,再判角取值範圍; 利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集; 三、《不等式》 解不等式的途徑,利用函式的性質。對指無理不等式,化為有理不等式。 高次向著低次代,步步轉化要等價。
數形之間互轉化,幫助解答作用大。 證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。 還有重要不等式,以及數學歸納法。
圖形函式來幫助,畫圖建模構造法。 四、《數列》 等差等比兩數列,通項公式n項和。兩個有限求極限,四則運算順序換。
數列問題多變幻,方程化歸整體算。數列求和比較難,錯位相消巧轉換, 取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程式好思考:
一算二看三聯想,猜測證明不可少。還有數學歸納法,證明步驟程式化: 首先驗證再假定,從 k向著k加1,推論過程須詳盡,歸納原理來肯定。
五、《複數》 虛數單位i一出,數集擴大到複數。乙個複數一對數,橫縱座標實虛部。 對應復平面上點,原點與它連成箭。
箭桿與x軸正向,所成便是輻角度。 箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。
代數運算的實質,有i多項式運算。i的正整數次慕,四個數值週期現。 一些重要的結論,熟記巧用得結果。
虛實互化本領大,複數相等來轉化。 利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形, 減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。
三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。 輻角運算很奇特,和差是由積商得。
四條性質離不得,相等和模與共軛, 兩個不會為實數,比較大小要不得。複數實數很密切,須注意本質區別。 六、《排列、組合、二項式定理》 加法乘法兩原理,貫穿始終的法則。
與序無關是組合,要求有序是排列。 兩個公式兩性質,兩種思想和方法。歸納出排列組合,應用問題須轉化。
排列組合在一起,先選後排是常理。特殊元素和位置,首先注意多考慮。 不重不漏多思考,**插空是技巧。
排列組合恒等式,定義證明建模試。 關於二項式定理,中國楊輝三角形。兩條性質兩公式,函式賦值變換式。
七、《立體幾何》 點線面三位一體,柱錐撞球為代表。距離都從點出發,角度皆為線線成。 高中《立體幾何》
垂直平行是重點,證明須弄清概念。線線線面和麵麵、三對之間迴圈現。 方程思想整體求,化歸意識動割補。
計算之前須證明,畫好移出的圖形。 立體幾何輔助線,常用垂線和平面。射影概念很重要,對於解題最關鍵。
異面直線二面角,體積射影公式活。公理性質三垂線,解決問題一大片。 八、《平面解析幾何》 有向線段直線圓,橢圓雙曲拋物線,引數方程極座標,數形結合稱典範。
笛卡爾的觀點對,點和有序實數對,兩者—一來對應,開創幾何新途徑。 兩種思想相輝映,化歸思想打前陣;都說待定係數法,實為方程組思想。 三種型別集大成,畫出曲線求方程,給了方程作曲線,曲線位置關係判。
四件工具是法寶,座標思想引數好;平面幾何不能丟,旋轉變換複數求。 解析幾何是幾何,得意忘形學不活。圖形直觀數入微,數學本是數形學。
2樓:烏魚小朋友
高中數學知識點總結
3樓:海風教育
怎樣學好高中數學?首先要摘要答題技巧
現在數學這個科目也是必須學習
的內容,但是現在還有很多孩子們都不喜歡這個科目,原因就是因為他們不會做這些題,導致這個科目拉他們的總分,該怎樣學好高中數學?對於數學題,他們都分為哪些型別?
老師在上數學課
我相信數學你們應該都知道吧,不管是在什麼時候,不管是學習上面還是在生活方面處處都是要用到的,到了高中該怎樣學好高中數學,現在我就來教你們一些數學的技巧.
選擇題1、排除:
排除方法是根據問題和相關知識你就知道你肯定不選擇這一項,因此只剩下正確的選項.如果不能立即獲得正確的選項,但是你們還是要對自己的需求都是要對這些有應的標準,提高解決問題的精度.注意去除這種方式還是一種解答這種**煩的好方式,也是解決選擇問題的常用方法.
2、特殊值法:
也就是說,根據標題中的條件,擇選出來這種獨特的方式還有知道他們,耳膜的內容關鍵都是要進行測量.在你使用這種方式答題的時候,你還是要看看這些方式都是有很多的要求會符合,你可以好好計算.
3、通過推測和測量,可以得到直接觀測或結果:
近年來,人們經常用這種方法來探索高考題中問題的規律性.這類問題的主要解決方法是採用不完整的歸類方式,通過實驗、猜測、試錯驗證、總結、歸納等過程,使問題得以解決.
填空題1、直接法:
根據杆所給出的條件,通過計算、推理或證明,可以直接得到正確的答案.
2、圖形方法:
根據問題的主幹提供資訊,畫圖,得到正確的答案.
首先,知道題幹的需求來填寫內容,有時,還有就是這些都有一些結果,比如回答特定的數字,精確到其中,遺憾的是,有些候選人沒有注意到這一點,並且犯了錯誤.
其次,沒有附加條件的,應當根據具體情況和一般規則回答.應該仔細分析這個話題的暗藏要求.
總之,填空和選擇問題一樣,這種題型不同寫出你是怎樣算出這道題的,而是直接寫出最終的結果.只有打好基礎,加強訓練,加強解開答案的秘籍,才能準確、快速地解決問題.另一方面要加強對填報問題的分析研究,掌握填報問題的特點和解決辦法,減少錯誤.
高中數學試卷
怎樣學好高中數學這也是需要我們自己群摸索一些學習的技巧,找到自己適合的方法,這還是很關鍵的.
4樓:life布可
高中數學內容包括集合與函式、三角函式、不等式、數列、複數、排列、組合、二項式定理、立體幾何、平面解析幾何等部分。具體總結如下:
1、《集合與函式》
內容子交並補集,還有冪指對函式。性質奇偶與增減,觀察圖象最明顯。復合函式式出現,性質乘法法則辨,若要詳細證明它,還須將那定義抓。
指數與對數函式,兩者互為反函式。底數非1的正數,1兩邊增減變故。函式定義域好求。
分母不能等於0,偶次方根鬚非負,零和負數無對數。正切函式角不直,餘切函式角不平;其餘函式實數集,多種情況求交集。
2、《三角函式》
三角函式是函式,象限符號座標註。函式圖象單位圓,週期奇偶增減現。同角關係很重要,化簡證明都需要。
正六邊形頂點處,從上到下弦切割中心記上數字1,鏈結頂點三角形;向下三角平方和,倒數關係是對角,頂點任意一函式,等於後面兩**。誘導公式就是好,負化正後大化小,變成稅角好查表,化簡證明少不了。二的一半整數倍,奇數化餘偶不變,將其後者視銳角,符號原來函式判。
兩角和的余弦值,化為單角好求值。
3、《不等式》
解不等式的途徑,利用函式的性質。對指無理不等式,化為有理不等式。高次向著低次代,步步轉化要等價。
數形之間互轉化,幫助解答作用大。證不等式的方法,實數性質威力大。求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。還有重要不等式,以及數學歸納法。
圖形函式來幫助,畫圖建模構造法。
4、《數列》
等差等比兩數列,通項公式n項和。兩個有限求極限,四則運算順序換。數列問題多變幻,方程化歸整體算。
數列求和比較難,錯位相消巧轉換,取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程式好思考:一算二看三聯想,猜測證明不可少。
還有數學歸納法,證明步驟程式化:首先驗證再假定,從 k向著k加1,推論過程須詳盡,歸納原理來肯定。
5、《複數》
虛數單位i一出,數集擴大到複數。乙個複數一對數,橫縱座標實虛部。對應復平面上點,原點與它連成箭。
箭桿與x軸正向,所成便是輻角度。箭桿的長即是模,常將數形來結合。代數幾何三角式,相互轉化試一試。
代數運算的實質,有i多項式運算。i的正整數次慕,四個數值週期現。一些重要的結論,熟記巧用得結果。
虛實互化本領大,複數相等來轉化。
高中數學知識點整理,高中數學所有知識點歸納
忒你頭 下面,我分章節講一下數學的主幹內容 那些雖然課本上沒有,但是必須講也必須學會的東西。目錄 未完待更新 零,總論與試卷分析 就是上文內容 一,函式 1.1 集合 1.2 函式的定義域 1.3 函式的值域 1.4 單調性 1.5 奇偶性,對稱性,週期性 1.6 指數函式,對數函式 1.7 復合函...
高中數學的重點難點是什麼?高中數學知識點
數列是其中的重點和難點,高考壓軸題必有一題是數列,但是不能只看壓軸題。我們老師說過了,高考倒數第三題之前的題,包括壓軸題的第1問都是常規題,可以用常規方法來做的,所以對於每個知識點每個例題都要熟練掌握,常規題比的是速度,壓軸題比的是方法,保證常規題沒錯,85 以上的分都已經到手了。至於重中之重嘛,四...
高中數學共多少知識點,高中數學所有知識點歸納
我囧你囧 好多的。乙個三角函式就夠多了 最全高中數學公式知識點總結 祝學習進步,金榜題名! 暗黑的名字 必修1 集合 函式概念與基本初等函式 指 對 冪函式 必修2 立體幾何初步 平面解析幾何初步。必修3 演算法初步 統計 概率。必修4 基本初等函式 三角函式 平面向量 三角恒等變換。必修5 解三角...