sinx 4的不定積分是什麼, sinx 4的不定積分怎麼求,不要直接給那個推導公式,要有具體的推導過程,謝謝。

時間 2021-10-26 09:37:15

1樓:小牛仔

= (sin4x)/32 - (sin2x)/4 + (3x/8) + c

(sinx)^4

= (sinx^2)^2

= ((1 - cos2x)/2)^2

= (1 - 2cos2x + (cos2x)^2)/4

= 0.25 - 0.5cos2x + 0.125(1 + cos4x)

= (cos4x)/8 - (cos2x)/2 + 3/8

∫ (sinx)^4dx

= ∫ ((cos4x)/8 - (cos2x)/2 + 3/8)dx

= ∫ ((cos4x)/8)dx - ∫ ((cos2x)/2)dx + ∫ (3/8)dx

= (1/32)∫ cos4xd4x - (1/4)∫ cos2xd2x + (3x/8)

= (sin4x)/32 - (sin2x)/4 + (3x/8) + c

求解

我們把函式f(x)的所有原函式f(x)+c(其中,c為任意常數)叫做函式f(x)的不定積分,又叫做函式f(x)的反導數,記作∫f(x)dx或者∫f(高等微積分中常省去dx),即∫f(x)dx=f(x)+c。

其中∫叫做積分號,f(x)叫做被積函式,x叫做積分變數,f(x)dx叫做被積式,c叫做積分常數或積分常量,求已知函式的不定積分的過程叫做對這個函式進行不定積分。

2樓:我要上自習

z這道不定積分題不難,主要考察的是三角函式的化簡(sinx)^4=(sin²x)²=[(1-cos2x)/2]²=(1+cos²2x-2cos2x)/4

=[1+(cos4x)/2-1/2-2cos2x]/4就是說一定要把平方,4此方給去掉,下面就是很簡單的余弦函式積分,相信樓主能很容易解決

樓主要是還有替他不明白的地方,歡迎找我討論謝謝

3樓:

(sinx)^4

= (sinx^2)^2

= ((1 - cos2x)/2)^2

= (1 - 2cos2x + (cos2x)^2)/4

= 0.25 - 0.5cos2x + 0.125(1 + cos4x)

= (cos4x)/8 - (cos2x)/2 + 3/8

∫ (sinx)^4dx

= ∫ ((cos4x)/8 - (cos2x)/2 + 3/8)dx

= ∫ ((cos4x)/8)dx - ∫ ((cos2x)/2)dx + ∫ (3/8)dx

= (1/32)∫ cos4xd4x - (1/4)∫ cos2xd2x + (3x/8)

= (sin4x)/32 - (sin2x)/4 + (3x/8) + c

(sinx)^4的不定積分怎麼求,不要直接給那個推導公式,要有具體的推導過程,謝謝。

4樓:我才是無名小將

sinx 的四次方化為sinx的平方的平方,平方可用倍角公式化為cos2x,化為cos2x的二次多項式形式,二次方再用倍角公式化為一次方積分 一次項直接積分 常數項直接積分,就可以了

5樓:匿名使用者

(sinx)^4

= (sinx^2)^2

= ((1 - cos2x)/2)^2

= (1 - 2cos2x + (cos2x)^2)/4

= 0.25 - 0.5cos2x + 0.125(1 + cos4x)

= (cos4x)/8 - (cos2x)/2 + 3/8

∫ (sinx)^4dx

= ∫ ((cos4x)/8 - (cos2x)/2 + 3/8)dx

= ∫ ((cos4x)/8)dx - ∫ ((cos2x)/2)dx + ∫ (3/8)dx

= (1/32)∫ cos4xd4x - (1/4)∫ cos2xd2x + (3x/8)

= (sin4x)/32 - (sin2x)/4 + (3x/8) + c

sinx的四次方求不定積分?? 過程

6樓:

∫(sinx)^4dx的不定積分為3/8*x-1/4cosx*(sinx)^3+3/8*sinx*cosx+c。

解:∫(sinx)^4dx

=∫(sinx)^3*sinxdx

=-∫(sinx)^3*dcosx

=-cosx*(sinx)^3+∫cosxd(sinx)^3

=-cosx*(sinx)^3+3∫cosx*cosx*(sinx)^2dx

=-cosx*(sinx)^3+3∫(cosx)^2*(sinx)^2dx

=-cosx*(sinx)^3+3∫(1-(sinx)^2)*(sinx)^2dx

=-cosx*(sinx)^3+3∫(sinx)^2dx-3∫(sinx)^4dx

則,4∫(sinx)^4dx=-cosx*(sinx)^3+3∫(sinx)^2dx

=-cosx*(sinx)^3+3/2∫(1-cos2x)dx

=-cosx*(sinx)^3+3/2*x-3/2∫cos2xdx

=-cosx*(sinx)^3+3/2*x-3/4*sin2x+c

=3/2*x-cosx*(sinx)^3+3/2*sinx*cosx+c

得,∫(sinx)^4dx=3/8*x-1/4cosx*(sinx)^3+3/8*sinx*cosx+c

7樓:angela韓雪倩

(sinx)^4

= (sinx^2)^2

= ((1 - cos2x)/2)^2

= (1 - 2cos2x + (cos2x)^2)/4

= 0.25 - 0.5cos2x + 0.125(1 + cos4x)

= (cos4x)/8 - (cos2x)/2 + 3/8

∫ (sinx)^4dx

= ∫ ((cos4x)/8 - (cos2x)/2 + 3/8)dx

= ∫ ((cos4x)/8)dx - ∫ ((cos2x)/2)dx + ∫ (3/8)dx

= (1/32)∫ cos4xd4x - (1/4)∫ cos2xd2x + (3x/8)

= (sin4x)/32 - (sin2x)/4 + (3x/8) + c

8樓:可樂上的_冰塊

對於sinx的4次方,要先知道兩個公式sinx平方=1-cosx平方,cosx平方=(1+cos2x)/2,sinx平方=(1-cos2x)/2。高次先降次,然後反覆用公式就行了

9樓:

原式=sin²x×sin²x=sin²x×(1-cos²x)=sin²x-sin²xcos²x

=0.5×(1-cos2x)-0.25sin²(2x)=0.5×(1-cos2x)-0.25×0.5(1-cos4x)

=0.375-0.5cos2x+0.25cos4x

sinx的8次方的不定積分,sinx 8 積分

先化簡再積分。直接利用三角公式化簡 sinx 8 1 cos2x 4 16 1 cos2x 2 2cos2x 2 16 3 4cos2x cos4x 2 64 9 16cos2x 2 cos4x 2 6cos4x 24cos2x 8cos2xcos4x 64 9 8 8cos4x 1 2 cos8x...

sinx 的n次方的不定積分怎麼求

解題過程如下圖 記作 f x dx或者 f 高等微積分中常省去dx 即 f x dx f x c。其中 叫做積分號,f x 叫做被積函式,x叫做積分變數,f x dx叫做被積式,c叫做積分常數或積分常量,求已知函式的不定積分的過程叫做對這個函式進行不定積分。常用積分公式 1 0dx c 2 x ud...

這個不定積分怎麼算啊,1 1 x 4 的不定積分怎麼算啊

5 dx 1 x 2 1 3 let x 2 1 6 tanu 1 6 x 2 5 6 dx secu 2 du dx 6 tanu 5.secu 2 du dx 1 x 2 1 3 6 tanu 5.secu 2 du secu 2 6 tanu 5 du 6 tanu 3 secu 2 1 du...