1樓:匿名使用者
如上,反覆分部積分。
2樓:多開軟體
(π/2)∫(0->π) [ xsinx /(1+(cosx)^2 ) ]dx
lety = π-x
dy = -dx
x=0, y=π
x=π,y=0
∫(0->π) [ xsinx /(1+(cosx)^2 ) ]dx =∫(π->0) [ ∫(π->0) [ (π-y)siny /(1+(cosy)^2 ) ](-dy)
=∫(0->π) [ ∫(0->π) [ (π-x)sinx /(1+(cosx)^2 ) ]dx
2∫(0->π) [ xsinx /(1+(cosx)^2 ) ]dx =π∫(0->π) sinx/(1+(cosx)^2 ) ]dx
∫(0->π) [ xsinx /(1+(cosx)^2 ) ]dx = (π/2)∫(0->π) sinx/(1+(cosx)^2 ) ]dx
(π/2)∫(0->π) [ xsinx /(1+(cosx)^2 ) ]dx =(π/2)^2∫(0->π) sinx/(1+(cosx)^2 ) ]dx
3樓:
v應選用三角>冪函式
堅持v=cosx
用udv=uv-udv幾次處
高數定積分問題,高等數學定積分問題
根據奇偶性來,奇函式在對稱區間的積分為0,偶函式在對稱區間的積分為單側積分的兩倍。 多開軟體 2 0 xsinx 1 cosx 2 dx lety x dy dx x 0,y x y 0 0 xsinx 1 cosx 2 dx 0 0 y siny 1 cosy 2 dy 0 0 x sinx 1 ...
高數定積分怎麼求,高數求定積分?
這題應該算是挺難的題了吧。昨晚睡覺一直在想,才找到解決的思路和方法,這個結果已經經過我的檢驗,可以放心使用.但過程你未必看得懂,我就在關鍵幾個地方給你解釋一下吧。第二個等號後面,也就是第一步計算,利用了正弦和余弦的關係,因為d後面出來乙個 x,第乙個括號裡面也有乙個 x,所以對消,不用改變式子的符號...
求解一道高數定積分問題,求解一道高數定積分問題 如圖題(3)
潮弘益 由影象可知,y asinx和y bsinx與y cosx在 0,2 上有交點,則a 0,b 0 可設a b 0 y asinx與y cosx的交點 x1,y1 asinx1 cosx1,解得x1 arctan 1 a sinx1 1 a 2 1 cosx1 a a 2 1 y bsinx與y...