1樓:
原函式的影象和反函式的影象一定是關於直線x=y對稱的,如果一個函式的反函式就是它自身,那麼這個函式自身的圖象關於直線x=y對稱。
2樓:韓增民鬆
是的,只要一個函式的反函式存在,原函式與其反函式的影象都關於y=x軸對稱
理7:解析:f(x)為r上奇函式,x>0時,f(x)=(1/2)^x+1
先考察x>0部分:定義域x>0,值域f(x)>2
其反函式f^(-1)(x)=log(1/2,x-1), 定義域x>2,值域f^(-1)(x)>0
顯然,a 符合
∵f(x)為r上奇函式,關於原點對稱,∴f^(-1)(x)也是奇函式,關於原點對稱。
∴選擇a
文4解析:∵函式 y=(1/2)^x+1,定義域r,值域f(x)>1
其反函式f^(-1)(x)=log(1/2,x-1), 定義域x>1,值域r
顯然,選擇a
3樓:匿名使用者
是的,反函式與源函式其實就是調換了x軸與y軸
例如: y=2^x 的反函式為x=log2y 如果仍以x為自變數,y為因變數 則反函式與原函式的影象完全一致 就連定義域,值域都一樣。但一般把x=log2y寫成y=log2x 這樣,反函式與原函式就是對調了一下x軸和y軸!
4樓:匿名使用者
任意函式只要反函式存在,原函式與反函式都是關於直線y=x對稱的。
46題增加定義域限制是為了考察對定義域的理解(限制在影象的某一部分)。47題不限制定義域,卻增加了“奇函式”這個條件,考察內容難度更大一些(先要作出f(x)=(1/2)^x+1 ,(x>0)關於y軸對稱的影象)。
是不是所有的反函式都關於y=x對稱? 10
5樓:匿名使用者
反函式就是關於y=x軸對稱的,這是反函式的基本性質。
所以是正確的。
誰能證明一個函式和它的反函式的影象關於直線y=x對稱
6樓:糖蔗雨果
設其中一個是y關於自變數x的函式y=f(x),其定義域為a,值域為c.那麼y=f(x)圖象上的任意一點經過y=x的對稱後總落在另外一個函式圖象上,也就是說,對於另外這個函式,y在c中的任意一個值,總有x在a中唯一確定的值與之對應,實際上可以依據函式的定義將這種對應關係表示為x關於y的函式x=g(y),此時這個函式的定義域變成了c,而值域則是a.按照反函式的定義,這裡y=f(x)和x=g(y)就是一對原函式與反函式.
值得注意的是,本命題的前提給定了這兩個圖象都是函式圖象,而不是廣義的曲線.事實上,並非所有的函式都有反函式相對應,比如偶函式(圖象關於y軸對稱的函式)就沒有反函式,因為偶函式關於y=x對稱的圖象不能成為函式(出現了一對多的對應形式).
7樓:匿名使用者
z=f(g), 反函式為 g=f(z);
關於直線y=x對稱,則表示在函式z=f(g)和函式g=f(z)上的點到直線y=x上的距離是相等的。
即可推斷函式z=f(g)和反函式g=f(z)上對應兩點之間的距離中心位置落在y=x上。
計算中心點的座標:x=(g+z)/2, y=(z+g)/2;
所以,y=x
關於y=x對稱的兩個函式一定互為反函式?
8樓:我是一個麻瓜啊
不一定。
這是因為,反函式的存在是前提。反函式和它的原函式的影象當然是關於直線y=x對稱,但是兩個影象關於直線y=x對稱的函式,卻可能不存在反函式。
比如:y=x^2和y=√x的影象關於直線y=x對稱卻都不互為反函式。只有削減它們的定義域以後成為y=x^2,(x>=0)和y=√x以後,才互為反函式。
9樓:匿名使用者
不是等價的。
這是因為,反函式的存在是前提。反函式和它的原函式的影象當然是關於直線y=x對稱,但是兩個影象關於直線y=x對稱的函式,卻可能不存在反函式。
比如:y=x^2和y^2=x的影象關於直線y=x對稱卻都不互為反函式。只有削減它們的定義域以後成為y=x^2,(x>=0)和y=根號x以後,才互為反函式。
10樓:匿名使用者
應該就正確的
y=f(x)反函式存在的條件是:在定義域內x和y是一一對應的關係,所以必須就單調函式才有反函式的。
證明:影象關於y=x 對稱的倆函式互為反函式 30
11樓:愛死b寶b寶了
設其中一個是y關於自變數x的函式y=f(x),其定義域為a,值域為c。那麼y=f(x)圖象上的任意一點經過y=x的對稱後總落在另外一個函式圖象上,也就是說,對於另外這個函式,y在c中的任意一個值,總有x在a中唯一確定的值與之對應,實際上可以依據函式的定義將這種對應關係表示為x關於y的函式x=g(y),此時這個函式的定義域變成了c,而值域則是a。按照反函式的定義,這裡y=f(x)和x=g(y)就是一對原函式與反函式。
值得注意的是,本命題的前提給定了這兩個圖象都是函式圖象,而不是廣義的曲線。事實上,並非所有的函式都有反函式相對應,比如偶函式(圖象關於y軸對稱的函式)就沒有反函式,因為偶函式關於y=x對稱的圖象不能成為函式(出現了一對多的對應形式)。
是不是關於y x對稱的函式就叫反函式
首先,我想考bai試是不會出這種du判斷題的 他應該會zhi讓你判斷 反函式是dao關於y x對稱的回 那當 然正確 答 再看你這個這個命題,我可以說,這個命題是完全正確的 chenninghh說,這個命題錯誤,理由卻是荒謬的 的確,函式存在反函式的充要條件是,函式的定義域與值域是一一對映 但是,這...
關於三次的反函式,關於2次函式的反函式求解。。。?
是 x y 3 3y 2 文字表達為 x 二分之 y的立方 3y 解 對原式兩邊立方,原式並合併整理後得到 y的立方 2x 3 x 1 x 2 1 2 1 3 3 x 1 x 2 1 2 1 3注意到這個式子和原式只著乙個2x和三櫚的關係,所以用上面得到的式子減去3倍原式得到 y的立方 y 2x於是...
大學高等數學反函式關於三角函式反函式的解答
arctanx 1 1 x 2 是用導數的定義推出來的,為了方便解題作為公式定理要求記憶 推導過程不要求掌握,死記硬背的東西難麼?你三角函式弄明白了,反三角也就知道了,例如sin 4 1 2所以arcsin1 2 4 lim arc tan 1 x x 無窮 x 無窮,1 x 0,根據反三角函式可知...