高等數學與數學分析 高等代數與線性代數之間的差別

時間 2021-08-30 10:12:06

1樓:匿名使用者

數學分析接近專業的東西,而高等數學是面相大眾的,比較廣,也比較簡單。

高等代數裡涉及到了一部分線形代數,

線形代數學的更具專業性!

2樓:匿名使用者

化外人 - 副總裁 十一級 回答的十分準確,其他答案有些出入。請採納第三條!

3樓:匿名使用者

高等數學和數學分析差不多,只是有人說數學分析更難點,不過我覺得差不多。數學分析一般是給數學專業的學的,好像有的學校經濟專業也學數學分析。

高等代數與線性代數

這兩個好像不能比較。

線性代數只是高等代數的一部分。

高等代數包括線性代數,概率論,常微分……

4樓:

數學分析、高等代數是數學系的基礎課,

比高等數學、線性代數內容更多,更側重理論,數學分析比高等數學多出實數理論、極限和連續的幾個重要理論、一致連續、一致收斂、黎曼積分理論、含參變數的積分、多元函式極限理論、場論,

而高等數學中的空間解析幾何和線性微分方程,在數學分析中沒有,數學系這兩章是兩門課:解析幾何、常微分方程。

高等代數比線性代數多出多項式理論、線性空間和線性變換、jordan分解、正交(酉)變換、雙線型函式等。

高等數學和線性代數的區別在**?

5樓:匿名使用者

1、包含範圍不同:

線性代數:高等代數內容的一重要部分,並且線性代數重點是掌握矩陣這一塊,計算居多,是非數學系的理工科生學的。

高等代數:掌握的東西多一些,內容上增加多項式和雙線性函式、酉空間、辛空間等抽象內容。

2、研究方向不同:

線性代數:研究物件是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現代數學的乙個重要課題;因而,線性代數被廣泛地應用於抽象代數和泛函分析中;

高等代數:主要以證明為主,屬於數學系學生所學。高等數學有其固有的特點,這就是高度的抽象性、嚴密的邏輯性和廣泛的應用性。抽象性和計算性是數學最基本、最顯著的特點。

3、實際應用方向不同:

線性代數:線性代數的理論已被泛化為運算元理論。由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。

高等代數:電子計算機的出現和普及使得數學的應用領域更加拓寬,現代數學正成為科技發展的強大動力,同時也廣泛和深入地滲透到了社會科學領域。

6樓:半寂蓮燈

1.高等數學包含線性代數

高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。主要內容包括:數列、極限、微積分、空間解析幾何與線性代數、級數、常微分方程。

2.高等數學比線性代數難

高等數學要掌握幾何,代數和分析,而線性代數重點在矩陣那塊,掌握算的技巧就會做題了。

3.先學高等數學,再學線性代數

大多數學校都是大一先開高等數學,大二再開線性代數。個人認為線性代數只要掌握高中的行列式就可以入門了,高等數學要掌握的東西挺多的。

7樓:河傳楊穎

1、兩者為包含關係,線性代數是高等代數內容的一重要部分,並且線性代數重點是掌握矩陣這一塊,計算居多,是非數學系的理工科生學的;

2、線性代數是數學的乙個分支,它的研究物件是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現代數學的乙個重要課題;因而,線性代數被廣泛地應用於抽象代數和泛函分析中;

3、通過解析幾何,線性代數得以被具體表示。線性代數的理論已被泛化為運算元理論。由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。

其他數學分支

線性代數是乙個成功的理論,其方法已經被應用於數學的其他分支。

模論就是將線性代數中的標量的域用環替代進行研究。

多線性代數將對映的「多變數」問題線性化為每個不同變數的問題,從而產生了張量的概念。

在運算元的光譜理論中,通過使用數學分析,可以控制無限維矩陣。

所有這些領域都有非常大的技術難點。

8樓:他de生活

線性代數是高等代數內容的一重要部分,並且線性代數重點是掌握矩陣這一塊,計算居多,是非數學系的理工科生學的;

高等代數掌握的東西多一些,內容上增加多項式和雙線性函式、 酉空間、辛空間等抽象內容,而且高等代數主要以證明為主,屬於數學系學生所學。

高等數學的特點:

作為一門基礎科學,高等數學有其固有的特點,這就是高度的抽象性、嚴密的邏輯性和廣泛的應用性。抽象性和計算性是數學最基本、最顯著的特點。

有了高度抽象和統一,我們才能深入地揭示其本質規律,才能使之得到更廣泛的應用。

嚴密的邏輯性是指在數學理論的歸納和整理中,無論是概念和表述,還是判斷和推理,都要運用邏輯的規則,遵循思維的規律。

所以說,數學也是一種思想方法,學習數學的過程就是思維訓練的過程。人類社會的進步,與數學這門科學的廣泛應用是分不開的。

尤其是到了現代,電子計算機的出現和普及使得數學的應用領域更加拓寬,現代數學正成為科技發展的強大動力,同時也廣泛和深入地滲透到了社會科學領域。

線性代數的意義:

線性代數在數學、物理學和技術學科中有各種重要應用,因而它在各種代數分支中占居首要地位。

在計算機廣泛應用的今天,計算機圖形學、計算機輔助設計、密碼學、虛擬實境等技術無不以線性代數為其理論和演算法基礎的一部分。

線性代數所體現的幾何觀念與代數方法之間的聯絡,從具體概念抽象出來的公理化方法以及嚴謹的邏輯推證、巧妙的歸納綜合等,對於強化人們的數學訓練,增益科學智慧型是非常有用的。

9樓:只梨花匠

區別就是:線性代數是高等數學中的一部分。

線性代數是數學的乙個分支,它的研究物件是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現代數學的乙個重要課題;因而,線性代數被廣泛地應用於抽象代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。

線性代數的理論已被泛化為運算元理論。由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。

線性代數是代數學的乙個分支,主要處理線性關係問題。線性關係意即數學物件之間的關係是以一次形式來表達的。

例如,在解析幾何裡,平面上直線的方程是二元一次方程;空間平面的方程是三元一次方程,而空間直線視為兩個平面相交,由兩個三元一次方程所組成的方程組來表示。含有n個未知量的一次方程稱為線性方程。關於變數是一次的函式稱為線性函式。

線性關係問題簡稱線性問題。解線性方程組的問題是最簡單的線性問題。

所謂「線性」,指的就是如下的數學關係:

。其中,f叫線性運算元或線性對映。所謂「代數」,指的就是用符號代替元素和運算,也就是說:

我們不關心上面的x,y是實數還是函式,也不關心f是多項式還是微分,我們統一把他們都抽象成乙個記號,或是一類矩陣。合在一起,線性代數研究的就是:滿足線性關係

的線性運算元f都有哪幾類,以及他們分別都有什麼性質。

高等數學:

指相對於初等數學而言,數學的物件及方法較為繁雜的一部分。

廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。

通常認為,高等數學是由微積分學,較深入的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。

主要內容包括:極限、微積分、空間解析幾何與線性代數、級數、常微分方程。

工科、理科研究生考試的基礎科目。

10樓:

高中數學基礎足以學習線性代數了

11樓:匿名使用者

首先我把我個人感覺告訴你

1.高數比線代難

2.兩者相互聯絡很小,不學高數,也能學會線代,也就是說隨便學哪個,對另乙個都沒什麼影響,學校開課是先學高數,但我覺得兩者沒什麼共性

3.線代其實只要學過高中的行列式,入門是很快的,而高數要花的功夫就比較多了

以上是我個人感覺,我是針對大學開的課來說的

12樓:我是岳會強

我是數學系的學生

談一下我的感受線性代數主要是解方程組,考試不會很難只要知道相關概念即可,但是向我們平時做的題幾天都做不出來。考試沒什麼,一次多元方程就是高中也能解,只是用了比較先進的工具-矩陣。

而高等數學主要內容就是微積分了,主要和函式打交道。線性代數可以說不要任何基礎,只要會加減就行了,而高數要有敏捷 的數學思維,深厚的基礎。

13樓:匿名使用者

線性代數是高等數學的乙個分支。

高等代數」和「數學分析」與高等數學有什麼區別

14樓:匿名使用者

計算機bai科學與技術專業學du

高等數學也線性代數.

高等zhi代數是工科的線性dao代數加上多項式那部分版!,而且高等代數的難權度較線性代數要大.也高等代數是數學專業的基礎課程...

數學分析嚴格上來說比高等數學難,內容差不多,但是它是數學專業的基礎課程,學的深度和其他任何的高等數學沒法比的,它主要注重的是理論方面的東西,而高等數學是工科如物理,計算機,經濟等專業學的,主要用於應用,如計算等方面,這就是他們的主要區別!

15樓:

高等代bai數、數學

分析是數學專業du中更細的數學研zhi究的分類。高dao等代數專

是代數方向的研究,而數屬學分析使用極限方法研究函式特性的數學。而高等數學是對非數學專業的人學習的區別於初等數學的數學,應當包括高等代數和數學分析部分。

16樓:匿名使用者

高等代數和數學分析是數學系的專業課

高等數學則是大部分工科,理科,經濟類學科的基礎課

電腦科學與技術專業要因學校而異的,有些學校要求學數學分析,如復旦大學,上海交通大學,有些學校則只要求學高等數學

17樓:匿名使用者

高代數除線性代數外還有多項式部分;

數學分析是數學專業的乙個重要分支,以理論為主;

高等數學是多分支數學的綜合,除包括以上內容外還有概率、空間解析幾何,常微方程等。

數學分析,高等數學,高等代數,線性代數,這些課程有什麼區別和聯絡?

18樓:悉鑫善廣

首先我把我個人感覺告訴你

1.高數比線代難

2.兩者相互聯絡很小,不學高數,也能學會線代,也就是說隨便學哪個,對另乙個都沒什麼影響,學校開課是先學高數,但我覺得兩者沒什麼共性

3.線代其實只要學過高中的行列式,入門是很快的,而高數要花的功夫就比較多了

以上是我個人感覺,我是針對大學開的課來說的

高等代數跟線性代數差別在**?

19樓:匿名使用者

看一看復教材目錄就知道了,「高等代製數」課程通常比「線bai性代數」課程內容du多zhi一些,多的部分就是「非線性」dao的部分。

以我現在用的高等代數課本而言,就有關於有理整數環、一元和多元多項式環、仿射空間和射影空間的內容這些都不是線性代數的範疇,而又有張量積與外代數,則是多重線性代數的內容。

就大多數學校的課程而言,高等代數是數學專業的課程,而線性代數多是非數學專業的課程(但不盡然,如中科大數學系就分成了初等數論和線性代數兩門課,而多項式理論等主要在抽象代數課程中),所以看上去高等代數一般比線性代數難。

實際上,本科非數學專業的線性代數課程,通常只是講最簡單的線性方程組、矩陣初等運算、行列式、初步的線性空間和線性變換理論,可能還有一點度量空間的理論——然而這都是線性代數學科中的基礎部分,如果深入的話,則進入諸如矩陣論、矩陣分析、特徵值理論、多線性代數和張量理論、更深入的線性空間和度量空間理論(從歐式空間到酉空間、辛空間、四維時間空間、索伯列夫空間……),那時候就難了。

高等數學,線性代數,數學分析,微積分的區別

高等數學 線性代數 微積分都是非數學專業課程,數學分析是數學專業課程高等數學是微積分 級數 常微分方程 空間解析幾何的綜合,難度比數學分析低,主要是理論講得少 線性代數是圍繞解線性方程組,討論線性方程組的一般規律,比如矩陣 線性變換 線性空間,數學專業這門課叫高等代數,理論也比線性代數講得多 微積分...

金融本科生該選數學分析還是高等數學

應該選擇高等數學。因為高等數學偏重於實際應用與解題,而數學分析偏重於理論以及過程研究 對於金融學的本科生而言,沒有必要對數學本身進行理論研究,而應注重於各種理論的靈活實際運用。數學分析 又稱高階微積分,分析學中最古老 最基本的分支。一般指以微積分學和無窮級數一般理論為主要內容,幷包括它們的理論基礎 ...

數學系考研高等代數和數學分析總分多少

的大嚇是我 不同的學校對於其數學系考研基礎課程數學分析和高等代數的總分是不一樣的。對於現在的大部分學校來講單科滿分都是150分的。對於北大和復旦的分數有一定的變化,北大之前滿分是100分,現在只看到了12年試題但是沒有總分計算 由於數學分析是11個題目所以總分估計應在是150 而對於北大的高等代數還...