關於定積分計算(自學微積分,比較吃力,求高手相助!多謝)

時間 2021-08-30 10:43:54

1樓:匿名使用者

不好意思,告訴你答案是在害您,為了您的學業成績,我只能告訴您知識點

從整個學科上來看,高數實際上是圍繞著極限、導數和積分這三種基本的運算的。對於每一種運算,我們首先要掌握它們主要的計算方法;熟練掌握計算方法後,再思考利用這種運算我們還可以解決哪些問題,比如會計算極限以後:那麼我們就能解決函式的連續性,函式間斷點的分類,導數的定義這些問題。

這樣一梳理,整個高數的邏輯體系就會比較清晰。

極限部分:

極限的計算方法很多,總結起來有十多種,這裡我們只列出主要的:四則運算,等價無窮小替換,洛必達法則,重要極限,泰勒公式,中值定理,夾逼定理,單調有界收斂定理。每種方法具體的形式教材上都有詳細的講述,考生可以自己回顧一下,不太清晰的地方再翻到對應的章節看一看。

會計算極限之後,我們來說說直接通過極限定義的基本概念:

通過極限,我們定義了函式的連續性:函式在處連續的定義是,根據極限的定義,我們知道該定義又等價於。所以討論函式的連續性就是計算極限。然後是間斷點的分類,具體標準如下:

從中我們也可以看出,討論函式間斷點的分類,也僅需要計算左右極限。

再往後就是導數的定義了,函式在處可導的定義是極限存在,也可以寫成極限存在。這裡的極限式與前面相比要複雜一點,但本質上是一樣的。最後還有可微的定義,函式在處可微的定義是存在只與有關而與 無關的常數使得時,有,其中。

直接利用其定義,我們可以證明函式在一點可導和可微是等價的,它們都強於函式在該點連續。

以上就是極限這個體系下主要的知識點。

導數部分:

導數可以通過其定義計算,比如對分段函式在分段點上的導數。但更多的時候,我們是直接通過各種求導法則來計算的。主要的求導法則有下面這些:

四則運算,復合函式求導法則,反函式求導法則,變上限積分求導。其中變上限積分求導公式本質上應該是積分學的內容,但出題的時候一般是和導數這一塊的知識點一起出的,所以我們就把它歸到求導法則裡面了。能熟練運用這些基本的求導法則之後,我們還需要掌握幾種特殊形式的函式導數的計算:

隱函式求導,引數方程求導。我們對導數的要求是不能有不會算的導數。這一部分的題目往往不難,但計算量比較大,需要考生有較高的熟練度。

然後是導數的應用。導數主要有如下幾個方面的應用:切線,單調性,極值,拐點。

每一部分都有一系列相關的定理,考生自行回顧一下。這中間導數與單調性的關係是核心的考點,考試在考查這一塊時主要有三種考法:①求單調區間或證明單調性;②證明不等式;③討論方程根的個數。

同時,導數與單調性的關係還是理解極值與拐點部分相關定理的基礎。另外,數學三的考生還需要注意導數的經濟學應用;數學一和數學二的考生還要掌握曲率的計算公式。

積分部分:

一元函式積分學首先可以分成不定積分和定積分,其中不定積分是計算定積分的基礎。對於不定積分,我們主要掌握它的計算方法:第一類換元法,第二類換元法,分部積分法。

這三種方法要融會貫通,掌握各種常見形式函式的積分方法。熟練掌握不定積分的計算技巧之後再來看一看定積分。定積分的定義考生需要稍微注意一下,考試對定積分的定義的要求其實就是兩個方面:

會用定積分的定義計算一些簡單的極限;理解微元法(分割、近似、求和、取極限)。至於可積性的嚴格定義,考生沒有必要掌握。然後是定積分這一塊相關的定理和性質,這中間我們就提醒考生注意兩個定理:

積分中值定理和微積分基本定理。這兩個定理的條件要記清楚,證明過程也要掌握,考試都直接或間接地考過。至於定積分的計算,我們主要的方法是利用牛頓—萊布尼茲公式借助不定積分進行計算,當然還可以利用一些定積分的特殊性質(如對稱區間上的積分)。

一般來說,只要不定積分的計算沒問題,定積分的計算也就不成問題。定積分之後還有個廣義積分,它實際上就是把積分過程和求極限的過程結合起來了。考試對這一部分的要求不太高,只要掌握常見的廣義積分收斂性的判別,再會進行一些簡單的計算就可以了。

會計算積分了,再來看一看定積分的應用。定積分的應用分為幾何應用和物理應用。其中幾何應用包括平面圖形面積的計算,簡單的幾何體(主要是旋轉體)體積的計算,曲線弧長的計算,旋轉曲面面積的計算。

物理應用主要是一些常見物理量的計算,包括功,壓力,質心,引力,轉動慣量等。其中數學一和數學二的考生需要全部掌握;數學三的考生只需掌握平面圖形面積的計算,簡單的幾何體(主要是旋轉體)體積的計算。這一部分題目的綜合性往往比較強,對考生綜合能力要求較高。

這就是高等數學整個學科從三種基本運算的角度梳理出來的主要知識點。除此之外,考生需要掌握的知識點還有多元函式微積分,它實際上是將一元函式中的極限,連續,可導,可微,積分等概念推廣到了多元函式的情況,考生可以按照上面一樣的思路來總結。另外還有兩章:

級數、微分方程。它們可以看做是對前面知識點綜合的應用。比如微分方程,它實際上就是積分學的推廣,解微分方程就是求積分。

而級數則是對極限,導數和積分各種知識的綜合應用。

2樓:雙子

c只能通過題目給定的x的函式值求解,並不是通過上下限求解

定積分和微積分有什麼區別?

3樓:一鳴問神

定積分是變數限定在一定的範圍內的積分,有範圍的.微積分包括微分和積分,積分和微分互為逆運算,積分又包括定積分和不定積分,不定積分是沒範圍的

眾所周知,微積分的兩大部分是微分與積分。一元函式情況下,求微分實際上是求乙個已知函式的導函式,而求積分是求已知導函式的原函式。所以,微分與積分互為逆運算。

微積分(calculus)是高等數學中研究函式的微分(differentiation)、積分(integration)以及有關概念和應用的數學分支。它是數學的乙個基礎學科。內容主要包括極限、微分學、積分學及其應用。

微分學包括求導數的運算,是一套關於變化率的理論。它使得函式、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。

定積分包含於微積分

微積分包括:微分,積分

積分又包括:定積分,不定積分

不定積分是只有積分號,沒有積分上下限的那種積分

定積分是不但有積分號,還有積分上下限的那種積分

微分:設函式y=f(x)的自變數有一改變量△x,則函式的對應改變量△y的近似值f~(x)*△x叫做函式y的微分.(「~」表示導數)

記為 dy=f~(x)△x

可見,微分的概念是在導數概念的基礎上得到的.

自變數的微分的等於自變數的改變量,則

將△x用dx代之,則微分寫為dy=f~(x)dx

變形為:dy/dx=f~(x)

故導數又叫微商.

積分:它是微分學的逆問題.函式f(x)的全體原函式叫做f(x)的或f(x)dx的不定積分.記作 ∫f(x)dx.

若f(x)是f(x)的原函式,則有

∫f(x)dx=f(x)+c c為任意常數,稱為不定積分常數.

對於定積分,它的概念**不同於不定積分.定積分檎是從極限方面來.是從以「不變」代「變」,以「直」代「曲」求某個變化過程中無限多個微小量的和,最後取極限得到的.

所以不定積分與定積分不是僅差乙個常數的問題,即使是在計算上僅差一常數,而且運算法則也基本相同.它們之間建立關係是通過「牛頓-萊布尼茲公式」.公式是

非曲直 ∫f(x)dx=f(b)-f(a) 積分下限a,上限b

4樓:小想的小世界

微積分包括微分和積分,微分和積分的運算正好相反,二者互為逆運算。

積分又包括定積分和不定積分。

定積分是指有固定的積分區間,它的積分值是確定的。

不定積分沒有固定的積分區間,它的積分值是不確定的。

微積分的應用:

(1)運動中速度與距離的互求問題

(2)求曲線的切線問題

(3)求長度、面積、體積、與重心問題等

(4)求最大值和最小值問題(二次函式,屬於微積分的一類)

定積分的應用:

1,解決求曲邊圖形的面積問題

例:求由拋物線與直線圍成的平面圖形d的面積s.

2,求變速直線運動的路程

做變速直線運動的物體經過的路程s,等於其速度函式v=v(t) (v(t)≥0)在時間區間[a,b]上的定積分

3,變力做功

定積分:數學定義:如果函式f(x)在區間[a,b]上連續,用分點xi將區間[a,b]分為n 個小區間,在每個小區間[xi-1,xi]上任取一點ri(i=1,2,3„,n) ,作和式f(r1)+...

+f(rn) ,當n趨於無窮大時,上述和式無限趨近於某個常數a,這個常數叫做y=f(x) 在區間上的定積分.。

記作/ab f(x) dx 即 /ab f(x) dx =limn>00 [f(r1)+...+f(rn)], 這裡,a 與 b叫做積分下限與積分上限,區間[a,b] 叫做積分區間,函式f(x) 叫做被積函式,x 叫做積分變數,f(x)dx 叫做被積式.

幾何定義:可以理解為在 oxy座標平面上,由曲線y=f(x)與直線x=a,x=b以及x軸圍成的曲邊梯形的面積值(一種確定的實數值)

微積分(calculus)是高等數學中研究函式的微分(differentiation)、積分(integration)以及有關概念和應用的數學分支。

它是數學的乙個基礎學科。內容主要包括極限、微分學、積分學及其應用。微分學包括求導數的運算,是一套關於變化率的理論。

它使得函式、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。

5樓:貳玉蘭愛琴

微積分包括微分和積分

積分包括不定積分和定積分

其中不定積分沒有積分上下限

所得原函式後面加乙個常數c

定積分是在不定積分的基礎上

加上了積分上下限

所得的是數

dy/dx

叫導數將dx乘到等式右邊

就是微分

6樓:甕信然程羅

微積分包括定積分,定積分屬於微積分範疇微分學的主要內容包括:極限理論、導數、微分等。

積分學的主要內容包括:定積分、不定積分等。

求微積分公式,積分 微積分公式計算

茅山東麓 1 基本公式 ax n anx n 1 sinx cosx cosx sinx e x e x lnx 1 x 積分公式就是它們的逆運算。2 求導的基本法則 積的求導法則 商的求導法則 隱函式的鏈式求導法則。3 基本的基本方法 a 直接套入上面的基本公式 b 變數代入法 c 分部積分法 d...

大學的微積分題,算定積分,乙個大學微積分求定積分關於上下限的問題求各位指點感謝

day星星點燈 定積分是變數限定在一定的範圍內的積分,有範圍的.微積分包括微分和積分,積分和微分互為逆運算,積分又包括定積分和不定積分,不定積分是沒範圍的 眾所周知,微積分的兩大部分是微分與積分。一元函式情況下,求微分實際上是求乙個已知函式的導函式,而求積分是求已知導函式的原函式。所以,微分與積分互...

該怎麼自學(物理,微積分,化學)

斌斌有禮 首先要告訴你的是你不可能在一個夏天物理和化學完全的補上。我是江蘇省的一名高中生,我已經學玩了高中所有的知識,在國內高中物理共有7本書,以力學為主要,電學與熱學為輔,還有一些分子理論和相對論。你現在是補救,所以建議你找本國內的物理高考複習書,就著講解的知識把力學和電學不一下,其他的高中學的都...