冪函式的導數公式為什麼要限定指數為非零有理數

時間 2021-09-04 05:29:59

1樓:承冷菱

冪函式是基本初等函式之一。

一般地,y=xα(α為有理數)的函式,即以底數為自變數,冪為因變數,指數為常數的函式稱為冪函式。例如函式y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0時x≠0)等都是冪函式。

冪函式的一般形式是

,其中,a可為任何常數,但中學階段僅研究a為有理數的情形(a為無理數

時,定義域為(0,+∞) ),這時可表示為

,其中m,n,k∈n*,且m,n互質。特別,當n=1時為整數指數冪。

(1)當m,n都為奇數,k為偶數時,如

等,定義域、值域均為r,為奇函式;

(2)當m,n都為奇數,k為奇數時,如

等,定義域、值域均為,也就是(-∞,0)∪(0,+∞),為奇函式;

(3)當m為奇數,n為偶數,k為偶數時,如

等,定義域、值域均為[0,+∞),為非奇非偶函式;

(4)當m為奇數,n為偶數,k為奇數時,如

等,定義域、值域均為(0,+∞),為非奇非偶函式;

(5)當m為偶數,n為奇數,k為偶數時,如

等,定義域為r、值域為[0,+∞),為偶函式;

(6)當m為偶數,n為奇數,k為奇數時,如

等,定義域為,也就是(-∞,0)∪(0,+∞),值域為(0,+∞),為偶函式。[1]

當α>0時,冪函式y=xα有下列性質:

a、影象都經過點(1,1)(0,0);

b、函式的影象在區間[0,+∞)上是增函式;

c、在第一象限內,α>1時,導數值逐漸增大;α=1時,導數為常數;0<α<1時,導數值逐漸減小,趨近於0(函式值遞增);

負值性質

當α<0時,冪函式y=xα有下列性質:

a、影象都通過點(1,1);

b、影象在區間(0,+∞)上是減函式;(內容補充:若為x-2,易得到其為偶函式。利用對稱性,對稱軸是y軸,可得其影象在區間(-∞,0)上單調遞增。其餘偶函式亦是如此)。

c、在第一象限內,有兩條漸近線(即座標軸),自變數趨近0,函式值趨近+∞,自變數趨近+∞,函式值趨近0。

零值性質

當α=0時,冪函式y=xa有下列性質:

a、y=x0的影象是直線y=1去掉一點(0,1)。它的影象不是直線。

希望我能幫助你解疑釋惑。

2樓:凌晏

1,高中範圍內,求某函式的導數,一般會要求該函式在定義域上連續。

2,,諸如y=x^√2在r上是否連續,涉及到高深的數學理論,用高中的數學知識無法說清楚。

3樓:匿名使用者

即使在高中階段,這個限定是沒有必要的。

冪函式的定義:形如y=x^α,其中x>0,α≠0的函式全體,稱作冪函式。所以冪函式的定義域是(0,+∞)。

在這上面定義的指數運算已經通過指數函式給出來了,所以即使α是無理數,它的函式和導函式也是有意義的。

在數學分析裡面,冪函式是通過指數函式和對數函式來定義的:

x^α:=e^[α*ln(x)],其中x>0,α≠0,這和中學階段的規定是一致的,完全不需要α是有理數。

而它的導數公式,也可以由復合函式的求導公式求出來:

(x^α)'='=e^[α*ln(x)]*α*(1/x)=α*(x^α)/x=α*x^(α-1),整個過程跟α是不是有理數毫無關係。

當然,如果要把引數的範圍進一步拓展,這將是復變函式所要**的問題,而中學階段給出的定義已經滿足復變函式以外的全部要求了。

為什麼冪函式的求導公式規定次數為正有理數

4樓:徐少

1,高中範圍內,求某函式的導數,一般會要求該函式在定義域上連續。

2,,諸如y=x^√2在r上是否連續,涉及到高深的數學理論,用高中的數學知識無法說清楚。

冪函式導數公式的證明

5樓:關鍵他是我孫子

y=x^a

兩邊取對數lny=alnx

兩邊對x求導(1/y)*y'=a/x

所以y'=ay/x=ax^a/x=ax^(a-1)

在這個過程之中:

1、lny 首先是 y 的函式,y 又是 x 的函式,所以,lny 也是 x 的函式。

2、lny 是一目了然的,是顯而易見的,是直截了當的,所以稱它為顯函式,explicit function。

3、設 u = lny,u 是 y 的顯函式,它也是 x 的函式,由於是隱含的,稱為隱函式,implicit。

4、u 對 y 求導是 1/y,這是對 y 求導,不是對 x 求導。

5、u 是 x 的隱函式,u 對 x 求導,用鏈式求導,chain rule。

6、u 對 x 的求導,是先對 y 求導,然後乘上 y 對 x 的求導,也就是:

du/dy = 1/y

du/dx = (du/dy) × (dy/dx) = (1/y) × y' = (1/y)y'。

6樓:08別來無恙

f(x)=xⁿ

f'(x)=lim(δx→0)[f(x+δx)-f(x)]/δx

=lim(δx→0)[(x+δx)ⁿ-xⁿ]/δx

=lim(δx→0)[(x+δx-x)·[(x+δx)^(n-1)+(x+δx)^(n-2)·x+...(x+δx)x^(n-2)+x^(n-1)]/δx

=x^(n-1)+(x)^(n-2)·x+...+x·x^(n-2)+x^(n-1)

=nx^(n-1)

冪函式是基本初等函式之一。

一般地.形如y=xα(α為有理數)的函式,即以底數為自變數,冪為因變數,指數為常數的函式稱為冪函式。例如函式y=x0、y=x1、y=x2、y=x-1(注:

y=x-1=1/x y=x0時x≠0)等都是冪函式。

冪函式的圖象一定在第一象限內,一定不在第四象限,至於是否在第

二、三象限內,要看函式的奇偶性;冪函式的圖象最多只能同時在兩個象限內;如果冪函式圖象與座標軸相交,則交點一定是原點.

1.正值性質

當α>0時,冪函式y=xα有下列性質:

a、影象都經過點(1,1)(0,0);

b、函式的影象在區間[0,+∞)上是增函式;

c、在第一象限內,α>1時,導數值逐漸增大;α=1時,導數為常數;0<α<1時,導數值逐漸減小,趨近於0;

2.負值性質

當α<0時,冪函式y=xα有下列性質:

a、影象都通過點(1,1);

b、影象在區間(0,+∞)上是減函式;(內容補充:若為x-2,易得到其為偶函式。利用對稱性,對稱軸是y軸,可得其影象在區間(-∞,0)上單調遞增。其餘偶函式亦是如此)

c、在第一象限內,有兩條漸近線(即座標軸),自變數趨近0,函式值趨近+∞,自變數趨近+∞,函式值趨近0。

3.零值性質

當α=0時,冪函式y=xa有下列性質:

a、y=x0的影象是直線y=1去掉一點(0,1)。它的影象不是直線。

7樓:國迎彤澄春

解答:1、y=f(x)表示的是y是x函式;

2、y對x求導,我們習慣寫成y『,國際上絕大多數國家習慣寫成dy/dx;

3、國際上也有少數國家習慣簡寫的導數表示式y』,而我們是執著於y『,執迷於y『;

4、執著的結果,我們很多學生,不知道y』的真正含義是dy/dx,是無窮小之商;

5、由於很多教師並不講究教學心理學、對教學法不屑一顧,很多學生就失去了本能的悟性;

6、lny首先是y的函式,y又是x的函式,所以,lny也是x的函式;

7、lny是一目了然的,是顯而易見的,是直截了當的,所以稱它為顯函式,explicitfunction;

8、設u=lny,u是y的顯函式,它也是x的函式,由於是隱含的,稱為隱函式,implicit;

9、u對y求導是1/y,這是對y求導,不是對x求導;

10、u是x的隱函式,u對x求導,用鏈式求導,chainrule;

11、u對x的求導,是先對y求導,然後乘上y對x的求導,也就是:

du/dy=1/y

du/dx=(du/dy)×(dy/dx)=(1/y)×y'=(1/y)y'。

歡迎追問。

8樓:牙牙啊

^^x^n-a^n

=x^n-ax^(n-1)+ax^(n-1)-a²x^(n-2)+a²x^(n-2)-a³x^(n-3)+...-a^(n-1)x+a^(n-1)x-a^n

=(x-a)x^(n-1)+(x-a)ax^(n-2)+...+(x-a)a^(n-1)

再除以(x-a),即可。

求導法則

由基本函式的和、差、積、商或相互復合構成的函式的導函式則可以通過函式的求導法則來推導。基本的求導法則如下:

1、求導的線性:對函式的線性組合求導,等於先對其中每個部分求導後再取線性組合(即①式)。

2、兩個函式的乘積的導函式:一導乘二+一乘二導(即②式)。

3、兩個函式的商的導函式也是乙個分式:(子導乘母-子乘母導)除以母平方(即③式)。

4、如果有復合函式,則用鏈式法則求導。

9樓:

(x^a)'=ax^(a-1)

證明:y=x^a

兩邊取對數lny=alnx

兩邊對x求導(1/y)*y'=a/x

所以y'=ay/x=ax^a/x=ax^(a-1)證畢!

10樓:匿名使用者

我們常用泰勒公式把函式f(x)展開成冪級數的形式,通常會說在x=x0處,這首先要滿足函式在領域(x0,δ)有定義,有直到n階的導數f(x0),這樣我們就可以在x=x0處用taylor公式了。當然如果在x=0處滿足上面的條件,那麼可以在x=0處,這就是所謂的馬克勞林公式,是泰勒公式的特殊情況。我們常用的初等函式冪級數表就是在x=0處的。

好了,我的微積分也快忘完了。打住了。

11樓:十年夢幻

冪函式求導公式應該是所有求導公式裡面最簡單的了。

如果一定要證明的話,只能由導數的定義來證明了。

像上面某位用取對數求導是不行的,這就好比用2-1=1來證明1+1=2。

用泰勒公式可行,但是殺雞用牛刀。

還是用定義證明。定義證明是很顯然的,樓主自己搞吧。

12樓:匿名使用者

最簡單的方法是用定義證明 !!!!

冪函式和指數函式,求導公式?

13樓:呼呼__大神

^(x^a)'=ax^(a-1)

證明:y=x^a

兩邊取對數lny=alnx

兩邊對x求導(1/y)*y'=a/x

所以y'=ay/x=ax^a/x=ax^(a-1)y=a^x

兩邊同時取對數:

lny=xlna

兩邊同時對x求導數:

==>y'/y=lna

==>y'=ylna=a^xlna

冪函式:一般的,形如y=x(a為實數)的函式,即以底數為自變數,冪為因變數,指數為常量的函式稱為冪函式。例如函式y=x y=x、y=x、y=x(注:

y=x=1/x y=x時x≠0)等都是冪函式。當a取非零的有理數時是比較容易理解的,而對於a取無理數時,初學者則不大容易理解了。因此,在初等函式裡,我們不要求掌握指數為無理數的問題,只需接受它作為乙個已知事實即可,因為這涉及到實數連續性的極為深刻的知識。

指數函式:是數學中重要的函式。應用到值e上的這個函式寫為exp(x)。

還可以等價的寫為e,這裡的e是數學常數,就是自然對數的底數,近似等於 2.718281828,還稱為尤拉數。一般地,y=a^x函式(a為常數且以a>0,a≠1)叫做指數函式,函式的定義域是 r 。

什麼是積分上限函式的導數公式

景愛呀 0,x f t dt f x 即 變動上限積分對變動上限的導數,等於將變動上限帶入被積函式。例 f x 0,x sint t dt 儘管 sint t 的原函式 f x 無法用初等函式表示,但f x 的導數卻可以根據 變動上限積分求導法則 算出 f x 0,x sint t dt sinx ...

抽象多元復合函式求二階偏導數的公式是什麼

在下星辰 多元復合函式的高階偏導數是考研數學的重要考點,同時也是多元函式微分學部分的難點,考查題型可以是客觀題也可以是主觀題,該知識點還經常與微分方程一起出綜合題。解決多元復合函式高階偏導關鍵在於畫出關係圖,同時弄明白函式偏導數依然為多元復合函式。一 多元復合函式偏導數 上面公式可以簡單記為 連線相...

分段函式可導為什麼要分段的地方左右導數相等

仇孝容丁 因為函式可導,一定連續!對於分段函式,只 了在分段處左右導數相等,才能保證函式的連續性!所以說,乙個分段函式可導,分段的地方左右導數一定相等! 祭德文錯巳 有 兩個 定理 分別 告訴我們 a,函式可導一定連續。b,可導的充要條件是左右 導數 存在且相等。函式在x點處左右導數相等,是指,導數...