1樓:勤佑平甫棋
把帶有根號的,被開方數為非負數,根指數為2的式子叫做二次根式
2樓:慶梅花懷詞
i.二次根式的定義:
一般地,形如√ā(a≥0)的式子叫做二次根式。
ii.二次根式√ā的簡單性質和幾何意義
1)√ā≥0(a≥0)[
雙非負性質
]2)(√ā)^2=a
(a≥0)[任何乙個非負數都可以寫成乙個數的平方的形式]
3)√(a^2+b^2)表示平面間兩點之間的距離
iii.二次根式的性質和最簡二次根式
1)二次根式√ā的化簡
a(a≥0)
√ā=|a|={
-a(a<0)
2)積的平方根與商的平方根
√ab=√a·√b(a≥0,b≥0)
√a/b=√a
/√b(a≥0,b≥0)
3)最簡二次根式
條件:(1)被開方數的因數是整數或字母,因式是整式;(2)被開方數中不含有可化為平方數或平方式的因數或因式。
iv.二次根式的乘法和除法
1運算法則
√a·√b=√ab(a≥0,b≥0)
√a/b=√a
/√b(a≥0,b≥0)
2共軛因式
如果兩個含有根式的代數式的積不再含有根式,那麼這兩個代數式叫做共軛因式,也稱互為有理化根式。
v.二次根式的加法和減法
1同類二次根式
一般地,把幾個二次根式化為最簡二次根式後,如果它們的被開方數相同,就把這幾個二次根式叫做同類二次根式。
2合併同類二次根式
把幾個同類二次根式合併為乙個二次根式就叫做合併同類二次根式。
3二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數相同的進行合併
ⅵ.二次根式的混合運算
確定運算順序
靈活運用運算定律
正確使用乘法公式
分母有理化要及時
二次根式的定義
3樓:drar_迪麗熱巴
一般地,形如√a的代數
式叫做二次根式,其中,a 叫做被開方數。當a≥0時,√a表示a的算術平方根;當a小於0時,√a的值為純虛數(在一元二次方程求根公式中,若根號下為負數,則方程有兩個共軛虛根)。
運算如下:
加減法1.同類二次根式
一般地,把幾個二次根式化為最簡二次根式後,如果它們的被開方數相同,就把這幾個二次根式叫做同類二次根式。 化簡:根號12等於4的根號3
2.合併同類二次根式
把幾個同類二次根式合併為乙個二次根式就叫做合併同類二次根式。
3.二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數相同的進行合併。
4樓:開文玉山綾
i.二次根式的定義:
一般地,形如√ā(a≥0)的式子叫做二次根式。
ii.二次根式√ā的簡單性質和幾何意義
1)√ā≥0(a≥0)[
雙非負性質
]2)(√ā)^2=a
(a≥0)[任何乙個非負數都可以寫成乙個數的平方的形式]
3)√(a^2+b^2)表示平面間兩點之間的距離
iii.二次根式的性質和最簡二次根式
1)二次根式√ā的化簡
a(a≥0)
√ā=|a|={
-a(a<0)
2)積的平方根與商的平方根
√ab=√a·√b(a≥0,b≥0)
√a/b=√a
/√b(a≥0,b≥0)
3)最簡二次根式
條件:(1)被開方數的因數是整數或字母,因式是整式;(2)被開方數中不含有可化為平方數或平方式的因數或因式。
iv.二次根式的乘法和除法
1運算法則
√a·√b=√ab(a≥0,b≥0)
√a/b=√a
/√b(a≥0,b≥0)
2共軛因式
如果兩個含有根式的代數式的積不再含有根式,那麼這兩個代數式叫做共軛因式,也稱互為有理化根式。
v.二次根式的加法和減法
1同類二次根式
一般地,把幾個二次根式化為最簡二次根式後,如果它們的被開方數相同,就把這幾個二次根式叫做同類二次根式。
2合併同類二次根式
把幾個同類二次根式合併為乙個二次根式就叫做合併同類二次根式。
3二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數相同的進行合併
ⅵ.二次根式的混合運算
確定運算順序
靈活運用運算定律
正確使用乘法公式
分母有理化要及時
5樓:祥雲成龍
1、定義:一般地,形如√ā(a≥0)的代數式叫做二次根式。當a>0時,√a表示a的算數平方根,√0=0
2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是乙個非負數。
1)a≥0 ; √ā≥0 [ 雙重非負性 ]2)(√ā)^2=a (a≥0)[任何乙個非負數都可以寫成乙個數的平方的形式]
3) √(a^2+b^2)表示平面間兩點之間的距離,即勾股定理推論1.3是的
例舉幾個 √2 √3 √5 √7 √6 √10
6樓:郭蘭環戌
初中未對根式下定義,只是說明哪些是根式。
形如√ā(a≥0)的代數式叫做二次根式。這是為後續學定義域作準備。
形如-√ā(a≥0)(如-√2)是二次根式,二次根式的加減就有這樣的式子。-√a可解釋為-1乘以√a.它和二次根式的定義沒有矛盾。
關於二次根式的定義
7樓:匿名使用者
初中未對根式下定義,只是說明哪些是根式。
形如√ā(a≥0)的代數式叫做二次根式。這是為後續學定義域作準備。
形如-√ā(a≥0)(如-√2)是二次根式,二次根式的加減就有這樣的式子。-√a可解釋為-1乘以√a.它和二次根式的定義沒有矛盾。
二次根式概念是什麼?
8樓:匿名使用者
如果乙個數的平方等於a,那麼這個數叫做a的平方根。a可以是具體的數,也可以是含有字母的代數式。
即:若[**] ,則
[**] 叫做a的平方根,記作x=
[**] 。其中a叫被開方數。其中正的平方根被稱為算術平方根。
關於二次根式概念,應注意:
被開方數可以是數 ,也可以是代數式。被開方數為正或0的,其平方根為實數;被開方數為負的,其平方根為虛數。
性質:1. 任何乙個正數的平方根有兩個,它們互為相反數。如正數a的算術平方根是
[**] ,則a的另乙個平方根為﹣
[**] ;最簡形式中被開方數不能有分母存在。
2. 零的平方根是零,即
[**] ;
3. 負數的平方根也有兩個,它們是共軛的。如負數a的平方根是
[**] 。
4. 有理化根式:如果兩個含有根式的代數式的積不再含有根式,那麼這兩個代數式互為有理化根式,也稱互為有理化因式。
5. 無理數可用有理數形式表示, 如:
[**] 。
9樓:祭純己冰嵐
就是至多只有平方根的代數式。當然也可以含有整數次方。
10樓:養彥告陽波
不想去全看,就重點看加粗部分
————————————————————————————————————
1、定義:一般地,形如√ā(a≥0)的代數式叫做二次根式。當a>0時,√a表示a的算數平方根,√0=0
2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是乙個非負數。
1)a≥0
;√ā≥0
[雙重非負性
]2)(√ā)^2=a
(a≥0)[任何乙個非負數都可以寫成乙個數的平方的形式]
3)√(a^2+b^2)表示平面間兩點之間的距離,即勾股定理推論
1)二次根式√ā的化簡
a(a≥0)
√ā=|a|={
-a(a<0)
2)積的平方根與商的平方根
√ab=√a·√b(a≥0,b≥0)
√a/b=√a
/√b(a≥0,b>0)
3)最簡二次根式
條件:(1)被開方數的因數是整數或字母,因式是整式;
(2)被開方數中不含有可化為平方數或平方式的因數或因式。
如:不含有可化為平方數或平方式的因數或因式的有√2、√3、√a(a≥0)、√x+y
等;含有可化為平方數或平方式的因數或因式的有√4、√9、√a^2、√(x+y)^2、√x^2+2xy+y^2等
1運算法則
√a·√b=√ab(a≥0,b≥0)
√a/b=√a
/√b(a≥0,b>0)
二數二次根之積,等於二數之積的二次根。
2共軛因式
如果兩個含有根式的代數式的積不再含有根式,那麼這兩個代數式叫做共軛因式,也稱互為有理化根式。
1同類二次根式
一般地,把幾個二次根式化為最簡二次根式後,如果它們的被開方數相同,就把這幾個二次根式叫做同類二次根式。
2合併同類二次根式
把幾個同類二次根式合併為乙個二次根式就叫做合併同類二次根式。
3二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數相同的進行合併
1確定運算順序
2靈活運用運算定律
3正確使用乘法公式
4大多數分母有理化要及時
5在有些簡便運算中也許可以約分,不要盲目有理化
分母有理化有兩種方法
i.分母是單項式
如:√a/√b=√a×√b/√b×√b=√ab/b
ii.分母是多項式
要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b
ii.分母是多項式
要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b
————————————————————————————————————
11樓:掌煙波庚
一般地,形如根號a(a≥0)的代數式叫做二次根式。
12樓:牢廷謙籍念
1、定義:一般地,形如√ā(a≥0)的代數式叫做二次根式。當a>0時,√a表示a的算數平方根,√0=0
2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是乙個非負數。
1)a≥0
;√ā≥0
[雙重非負性
]2)(√ā)^2=a
(a≥0)[任何乙個非負數都可以寫成乙個數的平方的形式]3)√(a^2+b^2)表示平面間兩點之間的距離,即勾股定理推論1.3是的
例舉幾個
√2√3
√5√7
√6√10
請採納。
13樓:詹耕順儲綾
你好,樓上的解答都有問題,因為本題自身就是錯誤的,請檢查是否抄錯,沒抄錯的話題目本身錯了
因為√3<2,所以√3-2<0
這樣根號下為負數,此根式是無意義的
所以題目有錯
不明白歡迎追問,答題不易,請及時採納,謝謝
二次根式的定義是什麼。
14樓:悠
定義:一般形如√ā(a≥0)的代數式叫做二次根式。當a≥0時,表示a的算術平方根;當a小於0時,非二次根式(在一元二次方程中,若根號下為負數,則無實數根)被開方數必須大於等於0。
15樓:喜和洽鈕佑
i.二次根式的定義:
一般地,形如√ā(a≥0)的式子叫做二次根式。
ii.二次根式√ā的簡單性質和幾何意義
1)√ā≥0(a≥0)[
雙非負性質
]2)(√ā)^2=a
(a≥0)[任何乙個非負數都可以寫成乙個數的平方的形式]
3)√(a^2+b^2)表示平面間兩點之間的距離
iii.二次根式的性質和最簡二次根式
1)二次根式√ā的化簡
a(a≥0)
√ā=|a|={
-a(a<0)
2)積的平方根與商的平方根
√ab=√a·√b(a≥0,b≥0)
√a/b=√a
/√b(a≥0,b≥0)
3)最簡二次根式
條件:(1)被開方數的因數是整數或字母,因式是整式;(2)被開方數中不含有可化為平方數或平方式的因數或因式。
iv.二次根式的乘法和除法
1運算法則
√a·√b=√ab(a≥0,b≥0)
√a/b=√a
/√b(a≥0,b≥0)
2共軛因式
如果兩個含有根式的代數式的積不再含有根式,那麼這兩個代數式叫做共軛因式,也稱互為有理化根式。
v.二次根式的加法和減法
1同類二次根式
一般地,把幾個二次根式化為最簡二次根式後,如果它們的被開方數相同,就把這幾個二次根式叫做同類二次根式。
2合併同類二次根式
把幾個同類二次根式合併為乙個二次根式就叫做合併同類二次根式。
3二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數相同的進行合併
ⅵ.二次根式的混合運算
確定運算順序
靈活運用運算定律
正確使用乘法公式
分母有理化要及時
關於二次根式的加減,初二數學 有關二次根式的加減中的同類二次根式。
遺失丅記憶 先化為a b 若結果為a b.c b a.c b 有些題會反著換回去 靈活運用就行. 鑫小朋友 數的開方與二次根式 回顧與思考 知識點 平方根 立方根 算術平方根 二次根式 二次根式性質 最簡二次根式 同類二次根式 二次根式運算 分母有理化 大綱要求 1.理解平方根 立方根 算術平方根的...
二次根式的乘除,二次根式的乘除法則是
1 法則 根a 根b 根ab a 0且b 0 2 型別 單項二次根式乘以單項二次根式 單項二次根式乘以多項二次根式 多項二次根式乘以多項二次根式 在進行乘法運算時,有時可以應用乘法公式,使計算簡便.3.二次根式的除法 1 法則 根a 根b 根a b a 0且b 0 2 型別 單項二次根式除以單項二次...
二次根式的乘法怎麼計算,二次根式計算的方法
文庫精選 內容來自使用者 你說的對 課題名稱 二次根式的乘法 授課型別 新授 上課時間 教學目標 1.知識與技能 使學生掌握二次根式乘法法則,能將二次根號外的因式移到根號內。2.過程與方法 通過猜想體驗 二次根式的乘法法則,實踐應用,鞏固法則。3.情感態度與價值觀 培養良好的學習習慣,體驗成功的喜悅...