單純形法求解max z 4X1 3X2 6X3 S T 3X1 X2 3X3 30 2X1 2X2 3X3 40 X1,X2,X3

時間 2021-09-17 08:46:08

1樓:匿名使用者

3x1+x2+3x3≤30 (1')

2x1+2x2+3x3≤40 (2')

x1≥0 (3')

x2≥0 (4')

x3≥0 (5')

3x1+x2+3x3=30 (1)

2x1+2x2+3x3=40 (2)

x1=0 (3)

x2=0 (4)

x3=0 (5)

case 1:

from (1) ,(2), (3), x1=0

x2 +3x3=30

2x2+3x3=40

x2 =10, x3= 20/3

satisfy (4') and (5')

(x1,x2,x3) = (0,10, 20/3)

z =4x1+3x2+6x3

=30+40

=70case 2:

from (1) ,(2), (4), x2=0

3x1+3x3=30

2x1+3x3=40

x1 =-10, does not satisfy (3')

rejected case 2

case 3:

from (1) ,(2), (5), x3=0

3x1+x2=30

2x1+2x2=40

x1=5, x2=15

satisfy (3') and (4')

(x1,x2,x3) = (5,15, 0)

z =4x1+3x2+6x3

=20+45

=65case 4:

from (1) ,(3), (4), x1=x2=0

3x1+x2+3x3=30

x3=10

2x1+2x2+3x3≤40 (2')

satisfy (2') and (5')

(x1,x2,x3) = (0,0, 10)

z =4x1+3x2+6x3

=60case 5:

from (1) ,(3), (5), x1=x3=0

3x1+x2+3x3=30

x2=30

2x1+2x2+3x3≤40 (2')

does not satisfy (2')

rejected case 5

case 6:

from (1) ,(4), (5), x2=x3=0

3x1+x2+3x3=30

x1=10

2x1+2x2+3x3≤40 (2')

satisfy (2') and (3')

(x1,x2,x3) = (10,0, 0)

z =4x1+3x2+6x3

=40case 7:

from (2) ,(3), (4), x1=x2=0

2x1+2x2+3x3=40

x3=40/3

3x1+x2+3x3≤30 (1')

does not satisfy (1')

rejected case 7

case 8:

from (2) ,(3), (5), x1=x3=0

2x1+2x2+3x3=40

x2=20

3x1+x2+3x3≤30 (1')

satisfy (1') and (4')

(x1,x2,x3) = ( 0,20,0)

z =4x1+3x2+6x3

=60case 9:

from (2) ,(4), (5), x2=x3=0

2x1+2x2+3x3=40

x1=20

3x1+x2+3x3≤30 (1')

does not satisfy (1')

rejected case 9

ie max z = case 1=70

2樓:程

請問你這個題哪兒來的?我也在做這個題。。。。。

方程(x 3X 3) X 3X 1 X 2X 1 X 4 的解為

數學新綠洲 方程 x 3 x 3 x 3 x 1 x 2 x 1 x 4 去括號得 x 6x 9 x 9 x 3x 2 x 3x 4 即 6x 18 6 6x 12 解得 x 2 方程0.3分之2x 2又3分之2 0.2分之 1.4 3x 可化為 0.3分之2x 3分之8 0.2分之 1.4 3x ...

把二次型x1x2 x1x3 x1x4 x2x4化成標準型

f y1 y2 y1 y2 y1 y2 y3 y1 y2 y4 y1 y2 y4 y1 2 y2 2 y1y3 2y1y4 y2y3 y1 1 2 y3 y4 2 y2 2 1 4 y3 2 y2y3 y3y4 y4 2 y1 1 2 y3 y4 2 y2 1 2 y3 2 y3y4 y4 2 y1...

1x2x3 2x3x4 3x4x57x8x9的值是多少請說出過程

提供乙個通用方法吧 考察一般項第k項 k k 1 k 2 k 3k 2k 1 2 3 2 3 4 n n 1 n 2 1 2 n 3 1 2 n 2 1 2 n n n 1 2 3n n 1 2n 1 6 2n n 1 2 n n 1 4 n n 1 2n 1 2 n n 1 n n 1 4 n n...