1樓:匿名使用者
3x1+x2+3x3≤30 (1')
2x1+2x2+3x3≤40 (2')
x1≥0 (3')
x2≥0 (4')
x3≥0 (5')
3x1+x2+3x3=30 (1)
2x1+2x2+3x3=40 (2)
x1=0 (3)
x2=0 (4)
x3=0 (5)
case 1:
from (1) ,(2), (3), x1=0
x2 +3x3=30
2x2+3x3=40
x2 =10, x3= 20/3
satisfy (4') and (5')
(x1,x2,x3) = (0,10, 20/3)
z =4x1+3x2+6x3
=30+40
=70case 2:
from (1) ,(2), (4), x2=0
3x1+3x3=30
2x1+3x3=40
x1 =-10, does not satisfy (3')
rejected case 2
case 3:
from (1) ,(2), (5), x3=0
3x1+x2=30
2x1+2x2=40
x1=5, x2=15
satisfy (3') and (4')
(x1,x2,x3) = (5,15, 0)
z =4x1+3x2+6x3
=20+45
=65case 4:
from (1) ,(3), (4), x1=x2=0
3x1+x2+3x3=30
x3=10
2x1+2x2+3x3≤40 (2')
satisfy (2') and (5')
(x1,x2,x3) = (0,0, 10)
z =4x1+3x2+6x3
=60case 5:
from (1) ,(3), (5), x1=x3=0
3x1+x2+3x3=30
x2=30
2x1+2x2+3x3≤40 (2')
does not satisfy (2')
rejected case 5
case 6:
from (1) ,(4), (5), x2=x3=0
3x1+x2+3x3=30
x1=10
2x1+2x2+3x3≤40 (2')
satisfy (2') and (3')
(x1,x2,x3) = (10,0, 0)
z =4x1+3x2+6x3
=40case 7:
from (2) ,(3), (4), x1=x2=0
2x1+2x2+3x3=40
x3=40/3
3x1+x2+3x3≤30 (1')
does not satisfy (1')
rejected case 7
case 8:
from (2) ,(3), (5), x1=x3=0
2x1+2x2+3x3=40
x2=20
3x1+x2+3x3≤30 (1')
satisfy (1') and (4')
(x1,x2,x3) = ( 0,20,0)
z =4x1+3x2+6x3
=60case 9:
from (2) ,(4), (5), x2=x3=0
2x1+2x2+3x3=40
x1=20
3x1+x2+3x3≤30 (1')
does not satisfy (1')
rejected case 9
ie max z = case 1=70
2樓:程
請問你這個題哪兒來的?我也在做這個題。。。。。
方程(x 3X 3) X 3X 1 X 2X 1 X 4 的解為
數學新綠洲 方程 x 3 x 3 x 3 x 1 x 2 x 1 x 4 去括號得 x 6x 9 x 9 x 3x 2 x 3x 4 即 6x 18 6 6x 12 解得 x 2 方程0.3分之2x 2又3分之2 0.2分之 1.4 3x 可化為 0.3分之2x 3分之8 0.2分之 1.4 3x ...
把二次型x1x2 x1x3 x1x4 x2x4化成標準型
f y1 y2 y1 y2 y1 y2 y3 y1 y2 y4 y1 y2 y4 y1 2 y2 2 y1y3 2y1y4 y2y3 y1 1 2 y3 y4 2 y2 2 1 4 y3 2 y2y3 y3y4 y4 2 y1 1 2 y3 y4 2 y2 1 2 y3 2 y3y4 y4 2 y1...
1x2x3 2x3x4 3x4x57x8x9的值是多少請說出過程
提供乙個通用方法吧 考察一般項第k項 k k 1 k 2 k 3k 2k 1 2 3 2 3 4 n n 1 n 2 1 2 n 3 1 2 n 2 1 2 n n n 1 2 3n n 1 2n 1 6 2n n 1 2 n n 1 4 n n 1 2n 1 2 n n 1 n n 1 4 n n...