1樓:幸福有你更幸福
1、公式法
例如∫x^ndx=x^(n+1)/(n+1)+c∫dx/x=lnx+c
∫cosxdx=sinx
等不定積分公式都應牢記,對於基本函式可直接求出原函式。
2、換元法
對於∫f[g(x)]dx可令t=g(x),得到x=w(t),計算∫f[g(x)]dx等價於計算∫f(t)w'(t)dt。
例如計算∫e^(-2x)dx時令t=-2x,則x=-1/2t,dx=-1/2dt,代入後得:-1/2∫e^tdt=-1/2e^t=-1/2e^(-2x)。對其求導驗算一下可知是正確的。
3、分步法
對於∫u'(x)v(x)dx的計算有公式:
∫u'vdx=uv-∫uv'dx(u,v為u(x),v(x)的簡寫)例如計算∫xlnxdx,易知x=(x^2/2)'則:
∫xlnxdx=x^2lnx/2-1/2∫xdx=x^2lnx/2-x^2/4=1/4(2x^2lnx-x^2)通過對1/4(2x^2lnx-x^2)求導即可得到xlnx。
4、綜合法
綜合法要求對換元與分步靈活運用,如計算∫e^(-x)xdx,這個就留著自己作為練習吧。
關於對基本函式求原函式可通過導數表直接得出,可以參考我的詞條。
2樓:zjl野罌粟
求導數的原函式不就是積分麼→_→
3樓:矛盾機
三分之二倍的x的二分之三次方
已知原函式的導數為:根號下的多項式,求原函式有哪些方法?如求y=根號(4-x的平方)的原函式.(要過程)
4樓:
一般用三角函式代換,已知y=√(x^2±a^2),若x在前,後面是減號,則設x=asect,若後面是加號,則設x=atant,
已知y=√(a^2-x^2),則設x=asint,本例中,∫√(4-x^2)dx,a=2,
則設x=2sint,dx=2costdt,√(4-x^2)=2cost,
cost=(1/2)√(4-x^2),
t=arcsinx/2,
sin2t=2sintcost=(x/2)√(4-x^2)原式=∫2cost*2costdt
=4*(1/2)∫(1+cos2t)dt
=2∫dt+∫cos2t d(2t)
=2t+sin2t+c
=2arcsin(x/2)+(x/2)√(4-x^2)+c.
如何求乙個導數的原函式?
5樓:很多很多
求乙個導數的原函式使用積分,積分
是微分的逆運算,即知道了函式的導函式,反求原函式。
積分求法:
1、積分公式法。直接利用積分公式求出不定積分。
2、換元積分法。換元積分法可分為第一類換元法與第二類換元法。
(1)第一類換元法(即湊微分法)。通過湊微分,最後依託於某個積分公式。進而求得原不定積分。
(2)第二類換元法經常用於消去被積函式中的根式。當被積函式是次數很高的二項式的時候,為了避免繁瑣的式,有時也可以使用第二類換元法求解。
3、分部積分法。設函式和u,v具有連續導數,則d(uv)=udv+vdu。移項得到udv=d(uv)-vdu
兩邊積分,得分部積分公式∫udv=uv-∫vdu。
6樓:匿名使用者
已知導數求原函式就是求積分
象這樣的復合函式一般是用變數代換。
f(x)=∫√(4-x^2)dx
令x=2sint
則 dx=2costdt
f(t)=∫2cost*2costdt
=2∫2cos^tdt
=2∫(cos2t+1)dt
=sin2t+2t
然後通過 sint=x/2
解得cost=√(1-x^2/4)
得到sin2t=2sint*cost=x/2*√(4-x^2)再由 sint=x/2,得到 t=arcsin(x/2)所以f(x)=x/2*√(4-x^2)+arcsin(x/2)一般有根號大多通過三角代換來求積分
√(1+x^2) 時 x=1/tant
√(1-x^2)時 x=sint 或者 x=cost√(x^2-1)時 x=csct
靈活執行三角公式就行了。
7樓:匿名使用者
主要是用到變換,將根號裡面的經過適當的變換去掉根號,之後就用一些積分公式將其積分出來,最後換成原來變數!比如這個題,我們設x=2cost,這樣就可以去掉根號啦!dx=-2sintdt
之後你就只要求f'(t)=2sint*(-2sint)=-4(sint)^2,對於這個積分先將次,在求積分!試試吧!
求導數的原函式是有幾種常見方法
8樓:左手半夏右手花
^1、公式法
例如∫x^ndx=x^(n+1)/(n+1)+c ∫dx/x=lnx+c ∫cosxdx=sinx 等不定積分公式都應牢記,對於基本函式可直接求出原函式。
2、換元法
對於∫f[g(x)]dx可令t=g(x),得到x=w(t),計算∫f[g(x)]dx等價於計算∫f(t)w'(t)dt。 例如計算∫e^(-2x)dx時令t=-2x,則x=-1/2t,dx=-1/2dt,代入後得:-1/2∫e^tdt=-1/2e^t=-1/2e^(-2x)。
3、分步法
對於∫u'(x)v(x)dx的計算有公式: ∫u'vdx=uv-∫uv'dx(u,v為u(x),v(x)的簡寫) 例如計算∫xlnxdx,易知x=(x^2/2)'則: ∫xlnxdx=x^2lnx/2-1/2∫xdx =x^2lnx/2-x^2/4=1/4(2x^2lnx-x^2) 通過對1/4(2x^2lnx-x^2)求導即可得到xlnx。
4、綜合法
綜合法要求對換元與分步靈活運用,如計算∫e^(-x)xdx。
如何求導數的原函式,如何求一個導數的原函式?
洋依然陰義 主要是用到變換,將根號裡面的經過適當的變換去掉根號,之後就用一些積分公式將其積分出來,最後換成原來變數!比如這個題,我們設x 2cost,這樣就可以去掉根號啦!dx 2sintdt 之後你就只要求f t 2sint 2sint 4 sint 2,對於這個積分先將次,在求積分!試試吧! 祖...
根號(1 x 2)的原函式是什麼
小牛仔 計算過程如下 x 1 x dx 1 1 x d 1 x 1 x c x 1 x 的原函式為 1 x c原函式存在定理若函式f x 在某區間上連續,則f x 在該區間內必存在原函式,這是乙個充分而不必要條件,也稱為 原函式存在定理 例如 x3是3x2的乙個原函式,易知,x3 1和x3 2也都是...
如何求xe x的原函式,如何求xe x的原函式?
滾雪球的秘密 xe x 的原函式是 xe x e x c。c為積分常數。分析過程如下 求xe x 的原函式就是對它求不定積分。xe x dx xe x e x dx xe x e x c 擴充套件資料 分部積分 uv u v uv 得 u v uv uv 兩邊積分得 u v dx uv dx uv ...