如何求導數的原函式 例如求根號x的原函式。要具體過程

時間 2021-10-29 04:56:00

1樓:幸福有你更幸福

1、公式法

例如∫x^ndx=x^(n+1)/(n+1)+c∫dx/x=lnx+c

∫cosxdx=sinx

等不定積分公式都應牢記,對於基本函式可直接求出原函式。

2、換元法

對於∫f[g(x)]dx可令t=g(x),得到x=w(t),計算∫f[g(x)]dx等價於計算∫f(t)w'(t)dt。

例如計算∫e^(-2x)dx時令t=-2x,則x=-1/2t,dx=-1/2dt,代入後得:-1/2∫e^tdt=-1/2e^t=-1/2e^(-2x)。對其求導驗算一下可知是正確的。

3、分步法

對於∫u'(x)v(x)dx的計算有公式:

∫u'vdx=uv-∫uv'dx(u,v為u(x),v(x)的簡寫)例如計算∫xlnxdx,易知x=(x^2/2)'則:

∫xlnxdx=x^2lnx/2-1/2∫xdx=x^2lnx/2-x^2/4=1/4(2x^2lnx-x^2)通過對1/4(2x^2lnx-x^2)求導即可得到xlnx。

4、綜合法

綜合法要求對換元與分步靈活運用,如計算∫e^(-x)xdx,這個就留著自己作為練習吧。

關於對基本函式求原函式可通過導數表直接得出,可以參考我的詞條。

2樓:zjl野罌粟

求導數的原函式不就是積分麼→_→

3樓:矛盾機

三分之二倍的x的二分之三次方

已知原函式的導數為:根號下的多項式,求原函式有哪些方法?如求y=根號(4-x的平方)的原函式.(要過程)

4樓:

一般用三角函式代換,已知y=√(x^2±a^2),若x在前,後面是減號,則設x=asect,若後面是加號,則設x=atant,

已知y=√(a^2-x^2),則設x=asint,本例中,∫√(4-x^2)dx,a=2,

則設x=2sint,dx=2costdt,√(4-x^2)=2cost,

cost=(1/2)√(4-x^2),

t=arcsinx/2,

sin2t=2sintcost=(x/2)√(4-x^2)原式=∫2cost*2costdt

=4*(1/2)∫(1+cos2t)dt

=2∫dt+∫cos2t d(2t)

=2t+sin2t+c

=2arcsin(x/2)+(x/2)√(4-x^2)+c.

如何求乙個導數的原函式?

5樓:很多很多

求乙個導數的原函式使用積分,積分

是微分的逆運算,即知道了函式的導函式,反求原函式。

積分求法:

1、積分公式法。直接利用積分公式求出不定積分。

2、換元積分法。換元積分法可分為第一類換元法與第二類換元法。

(1)第一類換元法(即湊微分法)。通過湊微分,最後依託於某個積分公式。進而求得原不定積分。

(2)第二類換元法經常用於消去被積函式中的根式。當被積函式是次數很高的二項式的時候,為了避免繁瑣的式,有時也可以使用第二類換元法求解。

3、分部積分法。設函式和u,v具有連續導數,則d(uv)=udv+vdu。移項得到udv=d(uv)-vdu

兩邊積分,得分部積分公式∫udv=uv-∫vdu。

6樓:匿名使用者

已知導數求原函式就是求積分

象這樣的復合函式一般是用變數代換。

f(x)=∫√(4-x^2)dx

令x=2sint

則 dx=2costdt

f(t)=∫2cost*2costdt

=2∫2cos^tdt

=2∫(cos2t+1)dt

=sin2t+2t

然後通過 sint=x/2

解得cost=√(1-x^2/4)

得到sin2t=2sint*cost=x/2*√(4-x^2)再由 sint=x/2,得到 t=arcsin(x/2)所以f(x)=x/2*√(4-x^2)+arcsin(x/2)一般有根號大多通過三角代換來求積分

√(1+x^2) 時 x=1/tant

√(1-x^2)時 x=sint 或者 x=cost√(x^2-1)時 x=csct

靈活執行三角公式就行了。

7樓:匿名使用者

主要是用到變換,將根號裡面的經過適當的變換去掉根號,之後就用一些積分公式將其積分出來,最後換成原來變數!比如這個題,我們設x=2cost,這樣就可以去掉根號啦!dx=-2sintdt

之後你就只要求f'(t)=2sint*(-2sint)=-4(sint)^2,對於這個積分先將次,在求積分!試試吧!

求導數的原函式是有幾種常見方法

8樓:左手半夏右手花

^1、公式法

例如∫x^ndx=x^(n+1)/(n+1)+c ∫dx/x=lnx+c ∫cosxdx=sinx 等不定積分公式都應牢記,對於基本函式可直接求出原函式。

2、換元法

對於∫f[g(x)]dx可令t=g(x),得到x=w(t),計算∫f[g(x)]dx等價於計算∫f(t)w'(t)dt。 例如計算∫e^(-2x)dx時令t=-2x,則x=-1/2t,dx=-1/2dt,代入後得:-1/2∫e^tdt=-1/2e^t=-1/2e^(-2x)。

3、分步法

對於∫u'(x)v(x)dx的計算有公式: ∫u'vdx=uv-∫uv'dx(u,v為u(x),v(x)的簡寫) 例如計算∫xlnxdx,易知x=(x^2/2)'則: ∫xlnxdx=x^2lnx/2-1/2∫xdx =x^2lnx/2-x^2/4=1/4(2x^2lnx-x^2) 通過對1/4(2x^2lnx-x^2)求導即可得到xlnx。

4、綜合法

綜合法要求對換元與分步靈活運用,如計算∫e^(-x)xdx。

如何求導數的原函式,如何求一個導數的原函式?

洋依然陰義 主要是用到變換,將根號裡面的經過適當的變換去掉根號,之後就用一些積分公式將其積分出來,最後換成原來變數!比如這個題,我們設x 2cost,這樣就可以去掉根號啦!dx 2sintdt 之後你就只要求f t 2sint 2sint 4 sint 2,對於這個積分先將次,在求積分!試試吧! 祖...

根號(1 x 2)的原函式是什麼

小牛仔 計算過程如下 x 1 x dx 1 1 x d 1 x 1 x c x 1 x 的原函式為 1 x c原函式存在定理若函式f x 在某區間上連續,則f x 在該區間內必存在原函式,這是乙個充分而不必要條件,也稱為 原函式存在定理 例如 x3是3x2的乙個原函式,易知,x3 1和x3 2也都是...

如何求xe x的原函式,如何求xe x的原函式?

滾雪球的秘密 xe x 的原函式是 xe x e x c。c為積分常數。分析過程如下 求xe x 的原函式就是對它求不定積分。xe x dx xe x e x dx xe x e x c 擴充套件資料 分部積分 uv u v uv 得 u v uv uv 兩邊積分得 u v dx uv dx uv ...