離散數學一道題構造語句a使得a有模型並

時間 2021-10-30 05:58:31

1樓:匿名使用者

語句a為∀x⌝p(x,x)∧∀x∀y(p(x,y)∧p(y,z)→p(x,z))∧∀x∃yp(x,y)。給定解釋i'如下。

di'為自然數集合, pi'(x,y)=1當且僅當x

任取滿足語句a的解釋i,取d1∈di,因為i(∀x∃yp(x,y))=1,所以有d2∈di使得pi(d1,d2)=1,又因為i(∀x⌝p(x,x))=1,故d1≠d2。因為i(∀x∃yp(x,y))=1,所以有d3∈di使得pi(d2,d3)=1,又因為i(∀x⌝p(x,x))=1,故d3≠d2。因為i(∀x∀y(p(x,y)∧p(y,z)→p(x,z)))=1,所以pi(d1,d3)=1,故d3≠d1。

因此,d1,d2,d3是論域中的三個不同元素。這個過程可以永遠進行下去,得到d1,d2,d3, 因此,論域中必然有無窮多個元素。

2樓:匿名使用者

2023年到2023年這道題還沒變..........

3樓:匿名使用者

同6系,怎麼破……q_q

4樓:

樓主北航6系的吧?...我也在糾結...

離散數學 這道題什麼意思?答案為1,但是不明白。誰能解釋下?謝謝了。

5樓:

第五題,設解釋i的論域d=,則謂詞公式被解釋為p(a)→p(a),p(a)→p(a)<=>┐p(a)∨p(a)<=>1

離散數學的一道題,問題如圖,商集要怎麼求

6樓:

答案的寫法是錯的。

商集與劃分有什麼關係?商集是所有的等價類組成的集合。根據等價關係r的定義,a的任意兩個子集如果元素個數相同,這兩個子集就有關係r。所以等價類是:

含有0個元素的子集有1個,等價類是[φ]=;

含有1個元素的子集有4個,等價類是==a;

含有2個元素的子集有6個,等價類是=,,,,,};

含有3個元素的子集有4個,等價類是=,,,};

含有4個元素的子集有1個,等價類是=}=.

商集p(a)/r=],,,,還可以把上面每一個等價類對應的集合的形式代入,寫

數學一道題

某工廠引進了新技術,使產品的成品的成本在兩年內從每件2500降到1600元,則平均每年降低的百分數是20 急,誰知道就告訴我,設平均每年下降百分之x,則有 2500 1 x 100 1600 1 x 100 16 25 1 x 100 4 5 x 100 1 5 x 20 所以平均每年下降百分之20...

數學,一道初中的數學應用題,一道初中數學應用題

商品流轉次數 期間銷售額 平均商品庫存 各月的流轉次數計算如下 1月份 340 160 180 2 2 次 2月份 378 180 240 2 1.8 次 3月份 418 240 200 2 1.9 次 季度的商品流轉次數 340 378 418 160 180 2 180 240 2 240 20...

求解兩道類似的道離散數學的選擇題

一樓的說法是錯誤的 先弄明白exayp x 和axeyp x 的區別吧 exayp x 是指存在數x使得任意y滿足p x axeyp x 是指對於任意x,存在數y滿足p x 回答選擇題裡 1 eyax x.y 1 存在數y使得任意x滿足x.y 1,錯誤的,對於任意y只有當x 1 y時才滿足公式 ax...