1樓:匿名使用者
你給我郵箱,我給你發郵箱裡
2樓:匿名使用者
本題知識利用了導數公式和同角三角形間的關係;(與反三角函式沒有聯絡)(1)0/0型的極限轉化為分子分母的導數的極限:(π-x)'=(-x)'=-1;
[cot(x/2)]'=-csc²(x/2)×(x/2)'=-csc²(x/2)×(1/2)
(2)利用同角x/2的餘割與正弦之間的倒數關係:cscα=1/sinα得;
-1/[-csc²(x/2)×(1/2)]=2sin²(x/2)
3樓:穗子和子一
反三角函式公式:
arcsin(-x)=-arcsinx
arccos(-x)=∏-arccosx
arctan(-x)=-arctanx
arccot(-x)=∏-arccotx
arcsinx+arccosx=∏/2=arctanx+arccotx
sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)
當x∈〔—∏/2,∏/2〕時,有arcsin(sinx)=x
當x∈〔0,∏〕,arccos(cosx)=x
x∈(—∏/2,∏/2),arctan(tanx)=x
x∈(0,∏),arccot(cotx)=x
x〉0,arctanx=arctan1/x,arccotx類似
若(arctanx+arctany)∈(—∏/2,∏/2),則arctanx+arctany=arctan(x+y/1-xy)
同角三角函式的基本關係式
倒數關係: 商的關係: 平方關係:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1 sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
誘導公式
sin(-α)=-sinα
cos(-α)=cosα tan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈z)
兩角和與差的三角函式公式 萬能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα ·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα ·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)
1-tan2(α/2)
cosα=——————
1+tan2(α/2)
2tan(α/2)
tanα=——————
1-tan2(α/2)
半形的正弦、余弦和正切公式 三角函式的降冪公式
二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=—————
1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=——————
1-3tan2α
三角函式的和差化積公式 三角函式的積化和差公式
α+β α-β
sinα+sinβ=2sin—--·cos—-—
2 2α+β α-β
sinα-sinβ=2cos—--·sin—-—
2 2α+β α-β
cosα+cosβ=2cos—--·cos—-—
2 2α+β α-β
cosα-cosβ=-2sin—--·sin—-—
2 2 1
sinα ·cosβ=-[sin(α+β)+sin(α-β)]
2 1cosα ·sinβ=-[sin(α+β)-sin(α-β)]
2 1cosα ·cosβ=-[cos(α+β)+cos(α-β)]
2 1sinα ·sinβ=- -[cos(α+β)-cos(α-β)]2
誰能幫我把反三角函式和三角函式的轉換公式列一下~謝謝了~ 5
4樓:匿名使用者
解答過程所示:
反三角函式為反正弦arcsin x,反余弦arccos x,反正切arctan x,反餘切arccot x,反正割arcsec x,反餘割arccsc x這些函式的統稱。
5樓:她是朋友嗎
反正弦函式(y=arc sinx,|x|≤1),反余弦函式(y=arc cosx,|x|≤1);反正切函式(y=arc tgx,x∈r),反餘切函式(y=arc ctgx,x∈r),反正割函式(y=arc secx,|x|≥1),反餘割函式(y=arc cscx,|x|≥1)統稱反三角函式。
誰知道反三角函式的轉換公式?
6樓:姚沐雪
反三角函式公式:
arcsin(-x)=-arcsinx
arccos(-x)=∏-arccosx
arctan(-x)=-arctanx
arccot(-x)=∏-arccotx
arcsinx+arccosx=∏/2=arctanx+arccotx
sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)
當x∈〔—∏/2,∏/2〕時,有arcsin(sinx)=x
當x∈〔0,∏〕,arccos(cosx)=x
x∈(—∏/2,∏/2),arctan(tanx)=x
x∈(0,∏),arccot(cotx)=x
x〉0,arctanx=arctan1/x,arccotx類似
若(arctanx+arctany)∈(—∏/2,∏/2),則arctanx+arctany=arctan(x+y/1-xy)
同角三角函式的基本關係式
倒數關係: 商的關係: 平方關係:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1 sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
誘導公式
sin(-α)=-sinα
cos(-α)=cosα tan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈z)
兩角和與差的三角函式公式 萬能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα ·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα ·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)
1-tan2(α/2)
cosα=——————
1+tan2(α/2)
2tan(α/2)
tanα=——————
1-tan2(α/2)
半形的正弦、余弦和正切公式 三角函式的降冪公式
二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=—————
1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=——————
1-3tan2α
三角函式的和差化積公式 三角函式的積化和差公式
α+β α-β
sinα+sinβ=2sin—--·cos—-—
2 2α+β α-β
sinα-sinβ=2cos—--·sin—-—
2 2α+β α-β
cosα+cosβ=2cos—--·cos—-—
2 2α+β α-β
cosα-cosβ=-2sin—--·sin—-—
2 2 1
sinα ·cosβ=-[sin(α+β)+sin(α-β)]
2 1cosα ·sinβ=-[sin(α+β)-sin(α-β)]
2 1cosα ·cosβ=-[cos(α+β)+cos(α-β)]
2 1sinα ·sinβ=- -[cos(α+β)-cos(α-β)]2
誰知道反三角函式的轉換公式,反三角函式可以轉換成三角函式嗎?怎樣轉換?轉換公式是怎麼?
姚沐雪 反三角函式公式 arcsin x arcsinx arccos x arccosx arctan x arctanx arccot x arccotx arcsinx arccosx 2 arctanx arccotx sin arcsinx x cos arccosx tan arctan...
什麼是反三角函式,代數函式,三角函式
脈殘 你好,很高興為你解答 反三角函式 sinx a,則a arcsinx.反三角函式 cosx a,則a arccosx.反三角函式 tanx a,則a arctanx.反三角函式 三角函式 三角函式 也叫做 圓函式 是角的函式 它們在研究三角形和建模週期現象和許多其他應用中是很重要的。三角函式通...
求三角函式和反三角函式常用公式
小陽同學 三角函式與反三角函式的關係公式 sin a b sinacosb cosasinbsin a b 反三角函式是一種基本初等函式。它是反正弦arcsinx,反餘弦arccosx,反正切arctanx,反餘切arccotx,反正割arcsecx,反餘割arccscx這些函式的統稱,各自表示其反...