1樓:
tanx+tany=25 cotx+coty=30, tan(x+y)=?
tanx+tany=25 ..............................(1)
cotx+coty=30,→1/tanx+1/tany=30,→
(tanx+tany)/tanx*tany=30,25/tanx*tany=30
tanx*tany=25/30=5/6..........................(2)
∴tan(x+y)=(tanx+tany)/(1-tanx*tany)
=25/(1-5/6)
=150
2樓:匿名使用者
tan(x+y)=(tanx+tany)/(1-tanx*tany) 這是最基本的公式
tanx+tany=25
只要知道tanx*tany的值
cotx+coty=1/tanx+1/tany=30(通分)=(tanx+tany)/tanx*tany
tanx*tany=(tanx+tany)/30=25/30=5/6tan(x+y)=25/(1-5/6)=150
3樓:匿名使用者
有公式,課本上要求記住的
tan(x+y)=(tanx+tany)/(1-tanx*tany)對cotx+coty=1/tanx+1/tany=30(通分)=(tanx+tany)/tanx*tany
tanx*tany=(tanx+tany)/30=25/30=5/6tan(x+y)=25/(1-5/6)=150
4樓:所涵楣
解: cotx+coty=30
1/tanx+1/tany=30
tany+tanx=30tanxtany
tanxtany=5/6
tan(x+y)=(tanx+tany)/(1-tanx·tany)=25*6/5=30
高中數學三角函式(完整加分)
5樓:匿名使用者
在直角三角形中sin=對邊
/斜邊 csc=斜邊/對邊=1/sincos=鄰邊/斜邊 sec=斜邊/鄰邊=1/costan=對邊/鄰邊
正余弦函式圖象
正切函式圖象
6樓:午後藍山
這個地方傳不上來**,你到「青一色大學生吧」,有個學習帖,有你要的所有數學資料
7樓:行星的故事
公式一: 設α為任意角,終邊相同的角的同一三角函式的值相等:
sin(2kπ+α)=sinα k∈z
cos(2kπ+α)=cosα k∈z
tan(2kπ+α)=tanα k∈z
cot(2kπ+α)=cotα k∈z
公式二: 設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三: 任意角α與 -α的三角函式值之間的關係:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四: 利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五: 利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六: π/2±α與α的三角函式值之間的關係:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
推算公式:3π/2±α與α的三角函式值之間的關係:
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
誘導公式記憶口訣:「奇變偶不變,符號看象限」。
「奇、偶」指的是π/2的倍數的奇偶,「變與不變」指的是三角函式的名稱的變化:「變」是指正弦變余弦,正切變餘切。(反之亦然成立)「符號看象限」的含義是:
把角α看做銳角,不考慮α角所在象限,看n・(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。
符號判斷口訣:
「一全正;二正弦;三兩切;四余弦」。這十二字口訣的意思就是說: 第一象限內任何乙個角的四種三角函式值都是「+」; 第二象限內只有正弦是「+」,其餘全部是「-」; 第三象限內只有正切和餘切是「+」,其餘全部是「-」; 第四象限內只有余弦是「+」,其餘全部是「-」。
高中數學三角函式是課本必修幾
8樓:各種怪
高中數學必修4
高中數學必修4的內容包括
三角函式、平面向量、三角恒等變換。
三角函式包括正弦函式、余弦函式和正切函式。在航海學、測繪學、工程學等其他學科中,還會用到如餘切函式、正割函式、餘割函式、正矢函式、餘矢函式、半正矢函式、半餘矢函式等其他的三角函式。不同的三角函式之間的關係可以通過幾何直觀或者計算得出,稱為三角恒等式。
擴充套件資料:高中必修四三角函式的內容:
1、任意角和弧度制
2、任意角的三角函式
閱讀與思考 三角學與天文學
3、三角函式的誘導公式
4、三角函式的圖象與性質
**與發現 函式y=asin(ωx+φ)及函式y=acos(ωx+φ)
**與發現 利用單位圓中的三角函式線研究正弦函式、余弦函式的性質資訊科技應用 利用正切線畫y=tanx,x∈(-π/2,π/2)5、函式y=asin(ωx+φ)的影象
閱讀與思考 振幅、週期、頻率、相位
6、三角函式模型的簡單應用
9樓:金果
高中數學三角函式是課本必修四的。
數學4(必修)的內容包括三角函式、平面向量、三角恒等變換。三角函式是描述週期現象的重要數學模型,在數學和其他領域中具有重要的作用。
這是學生在高中階段學習的最後乙個基本初等函式。向量是近代數學中重要和基本的數學概念之一,它是溝通代數、幾何與三角函式的一種工具。
有著極其豐富的實際背景,在數學和物理中都有廣泛的應用。三角恒等變換在數學中有一定的應用。充分利用三角函式、向量與學生已有經驗的聯絡創設問題情景。
10樓:jack常
三角函式是高中數學課本必修4的內容。
高中數學必修4是高中二年級下學期的課本,由人民教育出版社出版,這套2023年新課標教材的內容由三角函式、平面向量、三角恒等變換構成。
三角函式是數學中常見的一類關於角度的函式。也就是說以角度為自變數,角度對應任意兩邊的比值為因變數的函式叫三角函式,三角函式將直角三角形的內角和它的兩個邊長度的比值相關聯,也可以等價地用與單位圓有關的各種線段的長度來定義。
11樓:天藍__羽翼
人教版的是 必修 四。
第一章 三角函式
第三章 三角恒等變換
必修二里是沒有的。
12樓:
人教a版的話是必修四第一章,但是高考複習時三角函式把必修四第一章跟第三章,以及必修五第一章歸為一起講解複習.
13樓:匿名使用者
必修二和四,前面主要介紹誘導公式、三角函式線和應用的,後面主要是三角恒等變換,這部分比較難,公式繁多,但卻易考。
如何學好高中三角函式
14樓:匿名使用者
理解定義
2.記住影象e68a8462616964757a686964616f31333337616564
3.記憶公式
4.練習
一定要記住,不管哪一類函式,影象是幫助我們理解和解題的重要工具。
高中數學三角函式知識點總結:銳角三角函式公式
sin α=∠α的對邊 / 斜邊
cos α=∠α的鄰邊 / 斜邊
tan α=∠α的對邊 / ∠α的鄰邊
cot α=∠α的鄰邊 / ∠α的對邊
倍角公式
sin2a=2sina?cosa
cos2a=cosa^2-sina^2=1-2sina^2=2cosa^2-1
tan2a=(2tana)/(1-tana^2)
(注:sina^2 是sina的平方 sin2(a) )
高中數學三角函式知識點總結:三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
高中數學三角函式知識點總結:三倍角公式推導
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
高中數學三角函式知識點總結:輔助角公式
asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中
sint=b/(a^2+b^2)^(1/2)
cost=a/(a^2+b^2)^(1/2)
tant=b/a
asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
高中數學三角函式知識點總結:推導公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
=2sina(1-sin2a)+(1-2sin2a)sina
=3sina-4sin3a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos2a-1)cosa-2(1-sin2a)cosa
=4cos3a-3cosa
sin3a=3sina-4sin3a
=4sina(3/4-sin2a)
=4sina[(√3/2)2-sin2a]
=4sina(sin260°-sin2a)
=4sina(sin60°+sina)(sin60°-sina)
=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a=4cos3a-3cosa
=4cosa(cos2a-3/4)
=4cosa[cos2a-(√3/2)2]
=4cosa(cos2a-cos230°)
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述兩式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
高中數學中三角函式問題,高中數學 三角函式問題
奇變偶不變,符號看象限 是一句cos和sin變號的口訣,具體是這樣的 sin 3 2 cos 而sin 2 cos 奇變偶不變 是說當 後面加上的數為 2的奇數倍時,要變名 就是如果原來是sin就要變成cos 反之,是 2的偶數倍時,則不用變名。符號看象限 是說求sin 3 2 把 看作乙個第一象限...
高中數學三角函式怎麼學,高中數學三角函式是課本必修幾
我是蘇提 三角函式那的公式比較多 一定要背熟 至於你現在才高一,做題不順手是很正常的,畢竟才剛學嘛。這章的題 簡單的說 就是熟能生巧 會化簡 會求單調性 週期 就可以了 高考的時候 三角函式題 基本上就是和向量結合 化簡 求週期 求函式單調性 求角度 求三角形面積 放心好了,三角函式這的題和智商一點...
高中數學三角函式怎麼轉換
亂舞群羊 如下 sina cos 90 a sina cos a 90 cosa sin 90 a cosa sin a 90 tana sina cosa sin 2a cos 2a 1. 陳磊ss光 tan是對邊比鄰邊,cos是鄰邊比斜邊,sin是對邊比斜邊。tana sina cosa,再就是...