1樓:匿名使用者
二元一次方程如果乙個方程含有兩個未知數,並且所含未知項都為1次方,那麼這個整式方程就叫做二元一次方程,有無窮個解,若加條件限定有有限個解。二元一次方程組,則一般有乙個解,有時沒有解,有時有無數個解。如一次函式中的平行,。
二元一次方程的一般形式:ax+by+c=0其中a、b不為零。這就是二元一次方程的定義。
二元一次方程組定義:兩個結合在一起的共含有兩個未知數的一次方程,叫二元一次方程組。
目錄二元一次方程組
如右圖所示這樣,合起來有且只有兩個未知數的兩個一次方程,組成乙個二元一次方程組。(兩式都寫在大括號中)
二元一次方程的解:
使二元一次方程兩邊的值相等的兩個未知數的一組值,叫做二元一次方程的解。 二元一次方程組的兩個公共解,叫做一組二元一次方程組的解。 二元一次方程有無數個解,除非題目中有特殊條件。
但二元一次方程組有解,則有隻且有唯一的一組解,即x,y的值只有乙個。也有特殊的,例如無數個解: (3x+4y)=12 (x-y)=2 (6x+8y)=24 (x+y)=3 無解:
(3x+4y)=18 (4y+3x)=24
「消元」是解二元一次方程的基本思路。所謂「消元」就是減少未知數的個數,使多元方程最終轉化為一元一次方程再解出未知數。這種將方程組中的未知數個數由多化少,逐一解決的解法,叫做消元解法。
消元的方法:
代入消元法,(常用) 加減消元法,(常用) 順序消元法,(這種方法不常用)
消元法的例子:
{x-y=3 ① {3x-8y=4② 由①得x=y+3③ ③代入②得 3(y+3)-8y=4 y=1 所以x=4 則:這個二元一次方程組的解 {x=4 {y=1
教科書中沒有的,但比較適用的幾種解法:
(一)加減-代入混合使用的方法. 例1,{13x+14y=41 (1) {14x+13y=40 (2) 解:(2)-(1)得 x-y=-1 即x=y-1 (3) 把(3)代入(1)得 13(y-1)+14y=41 所以13y-13+14y=41 27y=54 y=2 把y=2代入(3)得 即x=1 所以:
x=1,y=2 最後 x=1 , y=2, 解出來 特點:兩方程相加減,單個x或單個y,這樣就適用接下來的代入消元. (二)換元法 是二元一次方程的另一種方法,就是說把乙個方程帶入另乙個方程中 如:
x+y=590 y+20=90%x 代入後就是: x+90%x-20=590 例2:(x+5)+(y-4)=8 (x+5)-(y-4)=4 令x+5=m,y-4=n 原方程可寫為 m+n=8 m-n=4 解得m=6,n=2 所以x+5=6,y-4=2 所以x=1,y=6 特點:
兩方程中都含有相同的代數式,如題中的x+5,y-4之類,換元後可簡化方程也是主要原因。 (三)引數換元 例3, x:y=1:
4 5x+6y=29 令x=t,y=4t 方程2可寫為:5t+24t=29 29t=29 t=1 所以x=1,y=4 此外,還有代入法可做題。 x+y=5 3x+7y=-1 解:
x=5-y 3(5-y)+7y=-1 15-3y+7y=-1 4y=-16 y=-4 得:x=9
2樓:吉爾格力蒙
二元一次方程求根公式?
3樓:摩羯啵啵波
設乙個二元
一次方程為:ax^2+bx+c=0,其中a不為0,因為要滿足此方程為二元一次方程所以a不能等於0.
求根公式為:x1=(-b+(b^2-4ac)^1/2)/2a ,x2=(-b-(b^2-4ac)^1/2)/2a
擴充套件資料韋達定理說明了一元二次方程中根和係數之間的關係。
法國數學家弗朗索瓦·韋達於2023年在著作《論方程的識別與訂正》中建立了方程根與係數的關係,提出了這條定理。 由於韋達最早發現代數方程的根與係數之間有這種關係,人們把這個關係稱為韋達定理。
4樓:柿子的丫頭
[-b+√(b^2-4ac)]/2a
[-b-√(b^2-4ac)]/2a
如果乙個方程含有兩個未知數,並且所含未知項都為一次方,那麼這個整式方程就叫做二元一次方程,有無窮個解,若加條件限定有有限個解。二元一次方程組,則一般有乙個解,有時沒有解,有時有無數個解。如一次函式中的平行,。
二元一次方程的一般形式:ax+by+c=0其中a、b不為零。這就是二元一次方程的通俗定義。
二元一次方程組的通俗定義:兩個結合在一起的共含有兩個未知數的一次方程,叫二元一次方程組。專業定義:
乙個含有兩個未知數,並且未知項的指數都是1的整式方程,叫二元一次方程(linear equation of two unknowns)。
二元一次方程組專業定義:由兩個二元一次方程所組成的方程組,叫二元一次方程組(system of linear equation of two unknowns)。
二元一次方程的解:使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解.二元一次方程組的解:二元一次方程組的兩個公共解,叫做二元一次方程組的解。
標準二元一次方程組包含六個係數,兩個未知數,形式為:
式1,ax+by=c
式2,a2x+b2y=c2
一般解法,消元:將方程組中的未知數個數由多化少,逐一解決. 二元一次方程組(y=1 x=1)
加減消元法:將方程組中的兩個等式用相加或者是相減的方法,抵消其中乙個未知數,從而達到消元的目的,將方程組中的未知數個數由多化少,逐一解決.
代入消元法:通過「代入」消去乙個未知數,將方程組轉化為一元一次方程來解,這種解法叫做代入消元法,簡稱代入法。一般不會用到。
擴充套件資料
二元一次方程組的解法.
(1)代入消元法:解方程組的基本思路是「消元」一把「二元」變為「一元」,主要步驟是,將其中乙個方程中
的某個未知數用含有另乙個未知數的代數式表示出來,並代人另乙個方程中,從而消去乙個未知數,化二元一次方程組為一元一次方程,這種解方程組的方法稱為代人消元法,簡稱代入法.
(2)加減消元法:通過方程兩邊分別相加(減)消去其中乙個未知數,這種解二元一次方程組的方法叫做加減消元法,簡稱加減法.
5樓:demon陌
x=[-b±根號﹙b²-4ac﹚]/﹙2a﹚△=b²-4ac≥0
用求根公式解一元二次方程的方法叫做求根公式法。
用求根公式法解一元二次方程的一般步驟為:
6樓:加速器
已知整數x,y滿足2x+2y+xy=25,求x+y的值
7樓:匿名使用者
二元一次方程求根可以用克
拉默法則計算
設二元一次方程組為
a11x1+a12x2=b1
a21x1+a22x2=b2
(數字全部是右下標,方程組有唯一解)
d=a11a12-a12a21
d1=b1a22-a12b2
d2=a11b2-b1a21
方程組的解為x1=d1/d
x2=d2/d
以上是克拉默法則在二元一次方程組中的應用,運算過程使用行列式,參照線性代數內容,這裡我不知道怎麼打行列式,直接放行列式的結果(反正二階的表示式簡單。)
8樓:李快來
x+y=0
x-2y+3=0
3y-3=0
y=1x=-1
請採納正確答案,你們只提問,不採納正確答案,回答都沒有勁!謝謝管理員推薦採納!!
朋友,請【採納答案】,您的採納是我答題的動力,如果沒有明白,請追問。謝謝。
9樓:不想取名字啊西
二元一次方程沒有求根公式,只能通過複數的等量關係求解。
如:2x-7y=8
3x-8y=10
解得x=6/5,y=-4/5
擴充套件資料:有求根公式的常見於一元二次方程:
對於一元二次方程的一般形式ax²+bx+c=0(a≠0),求根公式為x=[-b±(b^2-4ac)^(1/2)]/2a(δ=b^2-4ac≥0)。
10樓:薇爾莉特
題主問的二元一次方程,怎麼下面一群人說一元二次方程的
11樓:匿名使用者
二元一次方程方程並沒有求根公式。解方程的結果叫解,不能叫作根。二元一次方程是不定方程,有無數個解。
12樓:匿名使用者
二元一次方程非常的簡單就只有兩個未知數最高指數是一
13樓:匿名使用者
數學不好,真的幫不了。希望其他人可以幫到你抱歉
14樓:匿名使用者
二元一次方程兩種解法,一種是代入消元法;一種是加減消元法代入消元法是將①代入②,或將②代入①
加減消元法是前面的係數相同的話是①減②;第二個係數相同並且符號為+-相反符號是①加②,如果前面的係數和第二個係數都和第二組相同那麼①加②,①減②都可以。
(如有真的不會做,我只能說你六年級二元一次方程沒學好了,三元別說了,二元都不會不可能會三元)
15樓:匿名使用者
一元二次方程:對於方程:ax2+bx+c=0:
b2-4ac叫做根的判別式.
①求根公式是x
當△>0時,方程有兩個不相等的實數根; 當△=0時,方程有兩個相等的實數根;
當△<0時,方程沒有實數根.注意:當△≥0時,方程有實數根.②若方程有兩個實數根x1和x2,並且二次三項式ax2+bx+c可分解為a(x-x1)(x-x2). ③以a和b為根的一元二次方程是x2-(a+b)x+ab=0.
16樓:匿名使用者
自創求根公式了解一下
17樓:匿名使用者
這都不會。我的媽呀。
18樓:反炮聯
1.選乙個係數比較簡單的方程進行變形,變成 y = ax +b 或 x = ay + b的形式;
2.將y = ax + b 或 x = ay + b代入另乙個方程,消去乙個未知數,從而將另乙個方程變成一元一次方程;
3.解這個一元一次方程,求出 x 或 y 值;
4.將已求出的 x 或 y 值代入方程組中的任意乙個方程(y = ax +b 或 x = ay + b),求出另乙個未知數;
5。把求得的兩個未知數的值用大括號聯立起來,這就是二元一次方程的解。
例:解方程組 :x+y=5①
6x+13y=89②
解:由①得x=5-y③
把③代入②,得6(5-y)+13y=89
得 y=59/7
把y=59/7代入③,得x=5-59/7
得x=-24/7
∴ x=-24/7
y=59/7 為方程組的解
求解二元一次方程,求解二元一次方程
消元法 消元 是解二元一次方程的基本思路。所謂 消元 就是減少未知數的個數,使多元方程最終轉化為一元多次方程再解出未知數。這種將方程組中的未知數個數由多化少,逐一解決的解法,叫做消元解法。1 消元方法一般分為 代入消元法,簡稱 代入法 常用 加減消元法,簡稱 加減法 常用 順序消元法,這種方法不常用...
二元一次方程問題 20,二元一次方程問題
我覺得那肯定是個z 要不就是x y 2 x 4 2 y 10 3x 2y 8 a 如果是個z那麼就是2 x 5 y z x y z 8 得 x 2y 5 z 2 代入。x y z 2y 5 y 2 8 y 7 x 1 代入 3x 2y a 3 14 a a 17你可以確定以下題目。2 x 5 y z...
二元一次方程怎麼解,二元一次方程怎麼解
二元一次方程就是未知數有2個,每個未知數都是1次的並且一般解二元一次方程需要2個等式 一般情況 舉乙個例子 y 2x 3 y 5x 2 合併 2x 3 5x 2 移項 2x 5x 2 3 合併同類項 3x 1 解出 x 1 3 x 0.33 當然若不會運算負數乘除,可以移項時移成正數的,這樣就方便啦...